Development and Validation of an Artificial-Intelligence-enabled Portable Colposcopy Device for Optimizing Triage Alternatives for HPV-based Cervical Cancer Screening
开发和验证人工智能便携式阴道镜设备,用于优化基于 HPV 的宫颈癌筛查的分诊方案
基本信息
- 批准号:10625379
- 负责人:
- 金额:$ 57.13万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-05-20 至 2027-04-30
- 项目状态:未结题
- 来源:
- 关键词:Acetic AcidsAddressAdoptedAffectAlgorithmsAmbulatory CareArtificial IntelligenceBiopsyCaringCause of DeathCellular PhoneCervicalCervical Cancer ScreeningCervix UteriCessation of lifeCharacteristicsClassificationClinicalClinical ResearchColposcopesColposcopyComputer softwareCountryCoupledCytologyDataDatabasesDecision AidDevelopmentDevicesDiagnosisDiagnosticDiseaseEducational StatusEffectivenessEnsureEvaluationGenerationsGoalsGuidelinesHPV-High RiskHealthHealth care facilityHealthcareHemorrhageHuman PapillomavirusHuman ResourcesImageIncidenceIncomeInfertilityInfrastructureInterventionKenyaKnowledgeLettersLightLocationMalignant neoplasm of cervix uteriMedical ResearchMethodsModelingNational Cancer InstitutePathologyPerformancePhysiciansPilot ProjectsPopulationPredictive ValuePrevention strategyProcessProviderPublic HealthROC CurveRecommendationResearchResearch InstituteResolutionResourcesRetrievalRiskSensitivity and SpecificitySeriesSiteSpecificityTechnologyTestingTrainingTriageValidationVisitVisualWomanWorkWorld Health Organizationburden of illnesscervical cancer preventionclinic readyclinical research sitecomparative effectivenesscontrast imagingconvolutional neural networkcostdeep learningdeep learning algorithmdiagnostic accuracydiagnostic strategyexperiencefollow-upglobal healthimpressionimprovedinnovationlow and middle-income countriesmHealthmachine learning algorithmmortalityovertreatmentportabilitypremalignantprospectiveprospective testprototypereal world applicationrisk prediction modelrisk stratificationscreeningstandard caresuccesstechnology developmenttoolvirtual
项目摘要
Abstract
Cervical cancer is the second leading cause of death for women worldwide. Alarmingly, 85% of deaths occur in
low and middle-income countries (LMICs), as they lack the health care infrastructure required for cytology-based
screening, referral colposcopy diagnosis, and expert physicians, which have dramatically reduced the disease
burden in high income countries (HICs). Highly sensitive human papillomavirus (HPV) testing has been effective
at reducing the incidence and mortality from cervical cancer when directly coupled with treatment; however, a
majority of women with HPV do not have cervical precancer, making HPV testing a poor triage test as
overtreatment carries risks like
hemorrhage and infertility.
Colposcopy followed by biopsy, the preferred triage
method in HICs, is untenable in most LMIC settings due to the cost of colposcopes and pathology facilities to
process and interpret biopsy results. To make matters worse, women are lost to follow up in LMIC settings when
a multi-visit model for cervical cancer screening is used. Visual Inspection with Acetic Acid (VIA), the World
Health Organization recommended triage test following HPV testing, has widely varied sensitivity and specificity
depending on the training level of the provider. In this proposal we are proposing a single visit model for precision
diagnosis and treatment in LMICs for cervical cancer prevention. Two major technological tools are needed to
implement this model: a low-cost method to perform imaging of the cervix and a machine learning algorithm to
automate diagnosis in the absence of a provider. We have previously developed the Pocket Colposcope, which
has shown high concordance with standard colposcopy at a fraction of the cost and validated it on thousands of
women across nearly every continent. We are now in the process of developing a state-of-the-art convolutional
neural network (CNN), called Colposcopy Automated Risk Evaluation (CARE), trained with Pocket colposcopy
images to automate the diagnostic process. Our current prototype algorithm has been highly successful at
classifying cervical pre-cancers from Pocket Colposcope images retrospectively. Our goals for this proposal are
fourfold: 1) improve and generalize the performance of Pocket CARE using >10,000 National Cancer Institute
(NCI) standard colposcopy images; 2) generate synthetic images to address domain shifts due to environmental
and personnel changes between different clinical sites; 3) embed the CARE algorithm into our existing software
to enable high quality image capture with the Pocket Colposcope for automated diagnosis 4) validate the
performance of Pocket CARE prospectively with a clinical study in Kisumu, Kenya, a site where Pocket CARE
would ultimately be adopted\. The deliverables for this proposal will be a fully validated Pocket CARE software
ready for scale to different clinical scenarios based on location-specific cultural contexts and infrastructure
and a comparative effectiveness of Pocket CARE to other publicly available algorithms and standard RI care.
抽象的
宫颈癌是全球女性第二大死亡原因。令人震惊的是,85%的死亡发生在
低收入和中等收入国家(LMIC),因为它们缺乏基于细胞学的医疗保健基础设施
筛查、转诊阴道镜诊断和专家医师,大大减少了这种疾病的发生
高收入国家(HIC)的负担。高灵敏人乳头瘤病毒(HPV)检测已取得成效
直接结合治疗可降低宫颈癌的发病率和死亡率;然而,一个
大多数感染 HPV 的女性并没有宫颈癌前病变,因此 HPV 检测是一项较差的分类检测,因为
过度治疗会带来风险,例如
出血和不孕。
阴道镜检查后进行活检,这是首选分类
由于阴道镜和病理设施的成本,这种方法在高收入国家中是站不住脚的。
处理和解释活检结果。更糟糕的是,在中低收入国家环境中,女性在以下情况下无法进行随访:
使用多次访问模型进行宫颈癌筛查。乙酸目视检查 (VIA),世界
卫生组织推荐的 HPV 检测后分类检测,其敏感性和特异性差异很大
取决于提供者的培训水平。在本提案中,我们提出了单次访问模型以提高精度
中低收入国家宫颈癌预防的诊断和治疗。需要两个主要的技术工具
实现该模型:一种执行子宫颈成像的低成本方法和一种机器学习算法
在没有提供者的情况下自动诊断。我们之前开发了袖珍阴道镜,
已显示出与标准阴道镜检查的高度一致性,且成本仅为标准阴道镜检查的一小部分,并在数千个案例中进行了验证
几乎每个大陆的女性。我们现在正在开发一种最先进的卷积
神经网络 (CNN),称为阴道镜自动风险评估 (CARE),通过袖珍阴道镜进行训练
图像以自动化诊断过程。我们当前的原型算法在以下领域取得了巨大成功
从袖珍阴道镜图像中回顾性地对宫颈癌前病变进行分类。我们此提案的目标是
四重:1) 使用超过 10,000 个国家癌症研究所改进和推广 Pocket CARE 的性能
(NCI) 标准阴道镜图像; 2)生成合成图像以解决由于环境导致的域变化
以及不同临床地点之间的人员变动; 3)将CARE算法嵌入到我们现有的软件中
使用袖珍阴道镜捕获高质量图像以进行自动诊断 4) 验证
Pocket CARE 的性能在肯尼亚基苏木进行了一项临床研究,Pocket CARE 在此进行了前瞻性研究
最终会被采纳\.该提案的交付成果将是经过充分验证的 Pocket CARE 软件
准备好根据特定地点的文化背景和基础设施扩展到不同的临床场景
Pocket CARE 与其他公开可用的算法和标准 RI 护理的有效性比较。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Megan J. Huchko其他文献
Megan J. Huchko的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Megan J. Huchko', 18)}}的其他基金
A stigma responsive service delivery model for HPV-based screening among women living with HIV
针对感染艾滋病毒的女性进行基于 HPV 筛查的耻辱响应服务提供模式
- 批准号:
10669752 - 财政年份:2022
- 资助金额:
$ 57.13万 - 项目类别:
mSaada: A Mobile Health Tool to Improve Cervical Cancer Screening in western Kenya
mSaada:改善肯尼亚西部宫颈癌筛查的移动健康工具
- 批准号:
10688110 - 财政年份:2022
- 资助金额:
$ 57.13万 - 项目类别:
mSaada: A Mobile Health Tool to Improve Cervical Cancer Screening in western Kenya
mSaada:改善肯尼亚西部宫颈癌筛查的移动健康工具
- 批准号:
10525538 - 财政年份:2022
- 资助金额:
$ 57.13万 - 项目类别:
A stigma responsive service delivery model for HPV-based screening among women living with HIV
针对感染艾滋病毒的女性进行基于 HPV 筛查的耻辱响应服务提供模式
- 批准号:
10542876 - 财政年份:2022
- 资助金额:
$ 57.13万 - 项目类别:
Developing a tool to measure cervical cancer stigma among HIV+ women in Kenya
开发一种工具来衡量肯尼亚艾滋病毒妇女中宫颈癌的耻辱感
- 批准号:
9753601 - 财政年份:2019
- 资助金额:
$ 57.13万 - 项目类别:
Developing a tool to measure cervical cancer stigma among HIV+ women in Kenya
开发一种工具来衡量肯尼亚艾滋病毒妇女中宫颈癌的耻辱感
- 批准号:
9914142 - 财政年份:2019
- 资助金额:
$ 57.13万 - 项目类别:
Evaluating a community-driven cervical cancer prevention model in western Kenya
评估肯尼亚西部社区驱动的宫颈癌预防模式
- 批准号:
8762661 - 财政年份:2014
- 资助金额:
$ 57.13万 - 项目类别:
Evaluating a community-driven cervical cancer prevention model in western Kenya
评估肯尼亚西部社区驱动的宫颈癌预防模式
- 批准号:
8930102 - 财政年份:2014
- 资助金额:
$ 57.13万 - 项目类别:
Evaluating a community-driven cervical cancer prevention model in western Kenya
评估肯尼亚西部社区驱动的宫颈癌预防模式
- 批准号:
9126481 - 财政年份:2014
- 资助金额:
$ 57.13万 - 项目类别:
Evaluating a community-driven cervical cancer prevention model in western Kenya
评估肯尼亚西部社区驱动的宫颈癌预防模式
- 批准号:
9344547 - 财政年份:2014
- 资助金额:
$ 57.13万 - 项目类别:
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
Enhanced Cervical Cancer Screening Adoption and Treatment Linkage for HIV positive Women in Kenya (eCASCADE-Kenya)
加强肯尼亚艾滋病毒阳性女性的宫颈癌筛查采用和治疗联系 (eCASCADE-Kenya)
- 批准号:
10738134 - 财政年份:2023
- 资助金额:
$ 57.13万 - 项目类别:
RepurPosed AntiretrOviraL ThErapieS to EliminAte Cervical Cancer (POLESA Trial)
重新利用抗逆转录病毒疗法来消除宫颈癌(POLESA 试验)
- 批准号:
10738121 - 财政年份:2023
- 资助金额:
$ 57.13万 - 项目类别:
Development and Validation of an Artificial-Intelligence-enabled Portable Colposcopy Device for Optimizing Triage Alternatives for HPV-based Cervical Cancer Screening
开发和验证人工智能便携式阴道镜设备,用于优化基于 HPV 的宫颈癌筛查的分诊方案
- 批准号:
10416639 - 财政年份:2022
- 资助金额:
$ 57.13万 - 项目类别:
Defining the microbiota's response to and influence on the evolution of Drosophila melanogaster
定义微生物群对果蝇进化的反应和影响
- 批准号:
10515040 - 财政年份:2022
- 资助金额:
$ 57.13万 - 项目类别:
Project 2-Understanding CIN2+ among HIV infected women after LEEP: An epidemiological and immunohistochemical study
项目 2 - 了解 LEEP 后 HIV 感染女性中的 CIN2:流行病学和免疫组织化学研究
- 批准号:
10084054 - 财政年份:2020
- 资助金额:
$ 57.13万 - 项目类别: