Development and Validation of an Artificial-Intelligence-enabled Portable Colposcopy Device for Optimizing Triage Alternatives for HPV-based Cervical Cancer Screening
开发和验证人工智能便携式阴道镜设备,用于优化基于 HPV 的宫颈癌筛查的分诊方案
基本信息
- 批准号:10416639
- 负责人:
- 金额:$ 60.41万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-05-20 至 2027-04-30
- 项目状态:未结题
- 来源:
- 关键词:Acetic AcidsAddressAdoptedAffectAlgorithmsAmbulatory CareArtificial IntelligenceBiopsyCaringCause of DeathCellular PhoneCervicalCervical Cancer ScreeningCervix UteriCessation of lifeCharacteristicsClinicClinicalClinical ResearchColposcopesColposcopyComputer softwareCountryCoupledCytologyDataDatabasesDecision AidDevelopmentDevicesDiagnosisDiagnosticDiseaseEducational StatusEffectivenessEnsureEvaluationGenerationsGoalsGuidelinesHPV-High RiskHandHealthHealth care facilityHealthcareHemorrhageHuman PapillomavirusHuman ResourcesImageIncidenceIncomeInfertilityInfrastructureInterventionKenyaKnowledgeLettersLightLocationMalignant NeoplasmsMalignant neoplasm of cervix uteriMedical ResearchMethodsModelingNational Cancer InstitutePathologyPerformancePhysiciansPilot ProjectsPopulationPredictive ValuePrevention strategyProcessProviderPublic HealthROC CurveResearchResearch InstituteResolutionResourcesRetrievalRiskSensitivity and SpecificitySeriesSiteTestingTrainingTriageValidationVisitVisualWomanWorkWorld Health Organizationbaseburden of illnesscervical cancer preventionclinical research sitecomparative effectivenesscontrast imagingconvolutional neural networkcostdeep learningdeep learning algorithmdiagnostic accuracydiagnostic strategyexperiencefollow-upglobal healthimpressionimprovedinnovationlow and middle-income countriesmHealthmachine learning algorithmmortalityovertreatmentportabilityprospectiveprospective testprototypereal world applicationrisk prediction modelrisk stratificationscreeningstandard caresuccesstechnology developmenttoolvirtual
项目摘要
Abstract
Cervical cancer is the second leading cause of death for women worldwide. Alarmingly, 85% of deaths occur in
low and middle-income countries (LMICs), as they lack the health care infrastructure required for cytology-based
screening, referral colposcopy diagnosis, and expert physicians, which have dramatically reduced the disease
burden in high income countries (HICs). Highly sensitive human papillomavirus (HPV) testing has been effective
at reducing the incidence and mortality from cervical cancer when directly coupled with treatment; however, a
majority of women with HPV do not have cervical precancer, making HPV testing a poor triage test as
overtreatment carries risks like
hemorrhage and infertility.
Colposcopy followed by biopsy, the preferred triage
method in HICs, is untenable in most LMIC settings due to the cost of colposcopes and pathology facilities to
process and interpret biopsy results. To make matters worse, women are lost to follow up in LMIC settings when
a multi-visit model for cervical cancer screening is used. Visual Inspection with Acetic Acid (VIA), the World
Health Organization recommended triage test following HPV testing, has widely varied sensitivity and specificity
depending on the training level of the provider. In this proposal we are proposing a single visit model for precision
diagnosis and treatment in LMICs for cervical cancer prevention. Two major technological tools are needed to
implement this model: a low-cost method to perform imaging of the cervix and a machine learning algorithm to
automate diagnosis in the absence of a provider. We have previously developed the Pocket Colposcope, which
has shown high concordance with standard colposcopy at a fraction of the cost and validated it on thousands of
women across nearly every continent. We are now in the process of developing a state-of-the-art convolutional
neural network (CNN), called Colposcopy Automated Risk Evaluation (CARE), trained with Pocket colposcopy
images to automate the diagnostic process. Our current prototype algorithm has been highly successful at
classifying cervical pre-cancers from Pocket Colposcope images retrospectively. Our goals for this proposal are
fourfold: 1) improve and generalize the performance of Pocket CARE using >10,000 National Cancer Institute
(NCI) standard colposcopy images; 2) generate synthetic images to address domain shifts due to environmental
and personnel changes between different clinical sites; 3) embed the CARE algorithm into our existing software
to enable high quality image capture with the Pocket Colposcope for automated diagnosis 4) validate the
performance of Pocket CARE prospectively with a clinical study in Kisumu, Kenya, a site where Pocket CARE
would ultimately be adopted\. The deliverables for this proposal will be a fully validated Pocket CARE software
ready for scale to different clinical scenarios based on location-specific cultural contexts and infrastructure
and a comparative effectiveness of Pocket CARE to other publicly available algorithms and standard RI care.
抽象的
宫颈癌是全球女性死亡的第二大死亡原因。令人震惊的是,85%的死亡发生在
低收入和中等收入国家(LMIC),因为它们缺乏基于细胞学的医疗保健基础设施
筛查,转诊阴道镜诊断和专家医师,这些医师大大降低了该疾病
高收入国家(HIC)的负担。高度敏感的人乳头瘤病毒(HPV)测试已经有效
直接与治疗直接结合时,降低宫颈癌的发病率和死亡率;但是,
大多数HPV女性没有宫颈预科师
过度处理的风险像
出血和不育。
阴道镜进行活检,首选分类
HIC中的方法在大多数LMIC设置中都站不住脚,因为阴道镜和病理设施的成本
过程和解释活检结果。更糟糕的是,妇女在LMIC环境中失去了跟进
使用用于宫颈癌筛查的多访问模型。用乙酸(VIA)视觉检查,世界
健康组织建议在HPV测试后进行分类测试,其灵敏度和特异性各不相同
取决于提供者的培训水平。在此提案中,我们提出了一个单一的访问模型以确保精确
LMIC的诊断和治疗预防宫颈癌。需要两个主要的技术工具来
实现此模型:一种低成本方法,用于执行子宫颈成像和机器学习算法的成像
在没有提供商的情况下自动诊断。我们以前已经开发了口袋阴道镜,
与标准阴道镜的一小部分表现出很高的一致性,并在数千个成本上进行了验证
几乎每个大陆的妇女。我们现在正在开发最先进的卷积
神经网络(CNN),称为阴道镜自动化风险评估(CARE),接受口袋阴道镜训练
图像以自动化诊断过程。我们当前的原型算法在
回顾性的口袋阴道镜图像对宫颈前癌进行分类。我们为此提出的目标是
四倍:1)使用> 10,000个国家癌症研究所改善和推广口袋护理的表现
(NCI)标准阴道镜图像; 2)生成合成图像以解决由于环境而引起的域移动
以及人员之间的人员变化在不同的临床部位之间; 3)将护理算法嵌入到我们现有的软件中
用口袋阴道镜实现自动诊断的高质量图像捕获4)验证
在肯尼亚基苏木(Kisumu
最终将被采用\。该提案的可交付成果将是一个经过全面验证的口袋护理软件
准备根据特定于位置的文化环境和基础设施来了解不同的临床场景
口袋护理与其他公共可用算法和标准RI护理的比较有效性。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Elizabeth Anne BUKUSI其他文献
Elizabeth Anne BUKUSI的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Elizabeth Anne BUKUSI', 18)}}的其他基金
Sustainable Development for Improved HIV Health and Prevention in Kenya (SD4H-Kenya)
肯尼亚改善艾滋病毒健康和预防的可持续发展(SD4H-肯尼亚)
- 批准号:
10872887 - 财政年份:2023
- 资助金额:
$ 60.41万 - 项目类别:
Simplifying PrEP delivery: One-stop service pathway to improve PrEP care efficiency and continuation in Kenya
简化 PrEP 交付:提高肯尼亚 PrEP 护理效率和持续性的一站式服务途径
- 批准号:
10547902 - 财政年份:2022
- 资助金额:
$ 60.41万 - 项目类别:
Simplifying PrEP delivery: One-stop service pathway to improve PrEP care efficiency and continuation in Kenya
简化 PrEP 交付:提高肯尼亚 PrEP 护理效率和持续性的一站式服务途径
- 批准号:
10688130 - 财政年份:2022
- 资助金额:
$ 60.41万 - 项目类别:
Enhancing PrEP outcomes among Kenyan adolescent girls and young women with a novel pharmacy-based PrEP delivery platform
通过基于药房的新型 PrEP 交付平台提高肯尼亚少女和年轻女性的 PrEP 效果
- 批准号:
10402054 - 财政年份:2021
- 资助金额:
$ 60.41万 - 项目类别:
Evaluating sexually transmitted infections among adolescent girls and young women within a pharmacy-based PrEP delivery model in Kenya.
在肯尼亚基于药房的 PrEP 交付模式中评估青春期女孩和年轻女性的性传播感染情况。
- 批准号:
10878139 - 财政年份:2021
- 资助金额:
$ 60.41万 - 项目类别:
SD4H Training Grant Supplement to Promote Diversity, Equity and Inclusion
SD4H 培训补助金补充,以促进多元化、公平和包容性
- 批准号:
10874195 - 财政年份:2020
- 资助金额:
$ 60.41万 - 项目类别:
Sustainable Development for Improved HIV Health and Prevention in Kenya (SD4H-Kenya)
肯尼亚改善艾滋病毒健康和预防的可持续发展(SD4H-肯尼亚)
- 批准号:
10348189 - 财政年份:2020
- 资助金额:
$ 60.41万 - 项目类别:
Sustainable Development for Improved HIV Health and Prevention in Kenya (SD4H-Kenya)
肯尼亚改善艾滋病毒健康和预防的可持续发展(SD4H-肯尼亚)
- 批准号:
10544044 - 财政年份:2020
- 资助金额:
$ 60.41万 - 项目类别:
Sustainable Development for Improved HIV Health and Prevention in Kenya (SD4H-Kenya)
肯尼亚改善艾滋病毒健康和预防的可持续发展(SD4H-肯尼亚)
- 批准号:
10254375 - 财政年份:2020
- 资助金额:
$ 60.41万 - 项目类别:
PrEP and dPEP: Doxycycline post-exposure prophylaxis for prevention of sexually transmitted infections among Kenyan women using HIV pre-exposure prophylaxis
PrEP 和 dPEP:强力霉素暴露后预防,用于使用 HIV 暴露前预防来预防肯尼亚妇女的性传播感染
- 批准号:
10223161 - 财政年份:2019
- 资助金额:
$ 60.41万 - 项目类别:
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Enhanced Cervical Cancer Screening Adoption and Treatment Linkage for HIV positive Women in Kenya (eCASCADE-Kenya)
加强肯尼亚艾滋病毒阳性女性的宫颈癌筛查采用和治疗联系 (eCASCADE-Kenya)
- 批准号:
10738134 - 财政年份:2023
- 资助金额:
$ 60.41万 - 项目类别:
RepurPosed AntiretrOviraL ThErapieS to EliminAte Cervical Cancer (POLESA Trial)
重新利用抗逆转录病毒疗法来消除宫颈癌(POLESA 试验)
- 批准号:
10738121 - 财政年份:2023
- 资助金额:
$ 60.41万 - 项目类别:
Development and Validation of an Artificial-Intelligence-enabled Portable Colposcopy Device for Optimizing Triage Alternatives for HPV-based Cervical Cancer Screening
开发和验证人工智能便携式阴道镜设备,用于优化基于 HPV 的宫颈癌筛查的分诊方案
- 批准号:
10625379 - 财政年份:2022
- 资助金额:
$ 60.41万 - 项目类别:
Defining the microbiota's response to and influence on the evolution of Drosophila melanogaster
定义微生物群对果蝇进化的反应和影响
- 批准号:
10515040 - 财政年份:2022
- 资助金额:
$ 60.41万 - 项目类别:
Project 2-Understanding CIN2+ among HIV infected women after LEEP: An epidemiological and immunohistochemical study
项目 2 - 了解 LEEP 后 HIV 感染女性中的 CIN2:流行病学和免疫组织化学研究
- 批准号:
10084054 - 财政年份:2020
- 资助金额:
$ 60.41万 - 项目类别: