Double strand break repair maelstrom: causes, mechanisms and genome destabilizing consequences
双链断裂修复漩涡:原因、机制和基因组不稳定后果
基本信息
- 批准号:10623641
- 负责人:
- 金额:$ 44.09万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-06-06 至 2028-03-31
- 项目状态:未结题
- 来源:
- 关键词:Automobile DrivingBiological AssayCell SurvivalCellsChromosomesComplexComputer softwareCongenital AbnormalityCytidine DeaminaseDNA Double Strand BreakDNA RepairDNA Repair PathwayDNA Sequence RearrangementDNA biosynthesisDNA lesionDataDetectionDevelopmentDouble Strand Break RepairEventGeneticGenomeGenome StabilityGoalsHO nucleaseHumanKineticsKnowledgeMalignant NeoplasmsMammalsMeasuresMediatingMeiosisMethodologyMethodsMolecularMonitorMutationNamesNeurologicPathway interactionsPatternPositioning AttributeProteinsRAD52 geneRegulationResearchResolutionRoleSiteSyndromeSystemWorkYeastscell typechromosomal locationdata miningdesigndigitalearly detection biomarkersenvironmental stressorgenome sequencinghigh riskhuman diseaseinnovationprogramsrepairedtargeted treatmenttoolwhole genome
项目摘要
Accurate repair of DNA lesions is paramount to the survival of cells and to maintain their genomic stability.
Double-strand DNA breaks (DSBs) are the most lethal DNA lesion, and cells have evolved a variety of
mechanisms for their repair. While some DSB repair pathways are accurate, others can destabilize the
genome by creating mutations or chromosome rearrangements associated with cancer and other human
diseases. Our long-term goal is to identify factors that drive DSB repair into the maelstrom of deleterious DNA
repair pathways, and to characterize their molecular mechanisms. We focus on two such high-risk DSB repair
pathways: 1) break-induced replication (BIR), an unusual type of long-tract repair DNA synthesis that promotes
bursts of genetic instabilities; and 2) microhomology-mediated BIR (MMBIR), a replicative pathway involving
multiple template-switching events at positions of microhomologies that yields complex genomic
rearrangements. We will use an extensively characterized, powerful yeast system to study repair of a site-
specific HO-endonuclease-induced DSB to inform the design of studies in other systems. MIRA support
enabled significant progress in our characterization of BIR and MMBIR, including development of several
innovative tools. One of them, which we named AMBER (Assay for Monitoring BIR Elongation Rate), is a
droplet-digital-PCR-based method to measure BIR kinetics with unprecedented resolution. Using AMBER
during the next MIRA support cycle will allow us to identify the specific steps of BIR that are controlled by our
newly identified BIR driver protein candidates, including spindle assembly checkpoint proteins. We will also use
AMBER in our sensitive yeast BIR system to unravel the mechanisms of BIR regulation following its collision
with various replication obstacles, including characterizing the role of Rad52-dependent single-strand
annealing for BIR re-start after collision. The obtained results will shed light on the mechanism of Rad51-
independent BIR in yeast, which is a pathway that is likely similar to BIR events described in mammals.
Another approach that we developed with MIRA support enabled the detection of BIR events based on long
mutation clusters formed by BIR occurring in the presence of APOBEC (cytidine deaminase), and we propose
to apply this methodology here to detect BIR during yeast meiosis. Determining how frequently mutagenic BIR
might be used to repair meiotic DSBs is important because similar events can lead to birth defects in humans.
Finally, our new software, MMBSearch—developed based on our characterization of MMBIR in yeast—will be
used to identify specific conditions that predispose human cells to MMBIR events, which we recently found to
be frequent in cancer, but rare in non-cancerous cells. Applying MMBSearch to whole-genome sequencing
data will identify specific cancers, cell types, chromosomal locations and environmental stressors that promote
MMBIR. Overall, this research program will produce fundamental knowledge on the factors that promote risky
DSB repair pathways and the mechanisms of these pathways that can destabilize eukaryotic genomes.
DNA 损伤的准确修复对于细胞的生存和维持其基因组的稳定性至关重要。
双链 DNA 断裂 (DSB) 是最致命的 DNA 损伤,细胞已进化出多种
虽然某些 DSB 修复途径是准确的,但其他途径可能会破坏 DSB 的稳定性。
通过创建与癌症和其他人类相关的突变或染色体重排来改造基因组
我们的长期目标是找出驱动 DSB 修复进入有害 DNA 漩涡的因素。
我们重点关注两种此类高风险 DSB 修复。
途径:1) 断裂诱导复制 (BIR),一种不寻常的长链修复 DNA 合成类型,可促进
遗传不稳定性的爆发;2) 微同源介导的 BIR (MMBIR),一种涉及的复制途径
在微同源性位置发生多个模板转换事件,产生复杂的基因组
我们将使用一种特殊的、强大的酵母系统来研究位点的修复-
特定的 HO-核酸内切酶诱导的 DSB 为其他系统中的研究设计提供信息。
使我们在 BIR 和 MMBIR 的表征方面取得了重大进展,包括开发了几个
其中一个创新工具,我们将其命名为 AMBER(监测 BIR 伸长率的测定),是一种
基于液滴数字 PCR 的方法使用 AMBER 以前所未有的分辨率测量 BIR 动力学。
在下一个 MIRA 支持周期中,我们将能够确定由我们控制的 BIR 的具体步骤
我们还将使用新发现的 BIR 驱动蛋白候选物,包括纺锤体组装检查点蛋白。
我们敏感的酵母 BIR 系统中的 AMBER 可解开碰撞后 BIR 调节的机制
具有各种复制障碍,包括表征 Rad52 依赖性单链的作用
碰撞后 BIR 重新启动的退火所获得的结果将有助于阐明 Rad51- 的机制。
酵母中独立的 BIR,该途径可能类似于哺乳动物中描述的 BIR 事件。
我们在 MIRA 支持下开发的另一种方法可以根据长周期检测 BIR 事件
APOBEC(胞苷脱氨酶)存在时由 BIR 形成的突变簇,我们提出
在此应用此方法来检测酵母减数分裂期间的 BIR 诱变频率。
可能用于修复减数分裂 DSB 很重要,因为类似的事件可能导致人类出生缺陷。
最后,我们的新软件 MMBSearch(根据我们对酵母中 MMBIR 的表征而开发)将
用于识别使人类细胞易受 MMBIR 事件影响的特定条件,我们最近发现
在癌症中很常见,但在非癌细胞中很少见,将 MMBSearch 应用于全基因组测序。
数据将识别特定的癌症、细胞类型、染色体位置和环境压力因素,从而促进
MMBIR。总体而言,该研究计划将产生有关促进风险因素的基础知识。
DSB 修复途径以及这些途径的机制可能会破坏真核基因组的稳定性。
项目成果
期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Quantitative assessment reveals the dominance of duplicated sequences in germline-derived extrachromosomal circular DNA.
- DOI:10.1073/pnas.2102842118
- 发表时间:2021-11-23
- 期刊:
- 影响因子:11.1
- 作者:Mouakkad-Montoya L;Murata MM;Sulovari A;Suzuki R;Osia B;Malkova A;Katsumata M;Giuliano AE;Eichler EE;Tanaka H
- 通讯作者:Tanaka H
Measuring the contributions of helicases to break-induced replication.
测量解旋酶对断裂诱导复制的贡献。
- DOI:10.1016/bs.mie.2022.02.025
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Yan,Zhenxin;Liu,Liping;Pham,Nhung;Thakre,PilendraK;Malkova,Anna;Ira,Grzegorz
- 通讯作者:Ira,Grzegorz
Break-Induced Replication: The Where, The Why, and The How.
- DOI:10.1016/j.tig.2018.04.002
- 发表时间:2018-07
- 期刊:
- 影响因子:0
- 作者:Kramara J;Osia B;Malkova A
- 通讯作者:Malkova A
Break-induced replication: unraveling each step.
- DOI:10.1016/j.tig.2022.03.011
- 发表时间:2022-07
- 期刊:
- 影响因子:11.4
- 作者:Liu, Liping;Malkova, Anna
- 通讯作者:Malkova, Anna
Single-strand annealing between inverted DNA repeats: Pathway choice, participating proteins, and genome destabilizing consequences.
- DOI:10.1371/journal.pgen.1007543
- 发表时间:2018-08
- 期刊:
- 影响因子:4.5
- 作者:Ramakrishnan S;Kockler Z;Evans R;Downing BD;Malkova A
- 通讯作者:Malkova A
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Anna L Malkova其他文献
Anna L Malkova的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Anna L Malkova', 18)}}的其他基金
The role of human RAD52 protein in genome stability
人类 RAD52 蛋白在基因组稳定性中的作用
- 批准号:
9904590 - 财政年份:2019
- 资助金额:
$ 44.09万 - 项目类别:
The role of human RAD52 protein in genome stability
人类 RAD52 蛋白在基因组稳定性中的作用
- 批准号:
9763870 - 财政年份:2019
- 资助金额:
$ 44.09万 - 项目类别:
The role of human RAD52 protein in genome stability
人类 RAD52 蛋白在基因组稳定性中的作用
- 批准号:
10361559 - 财政年份:2019
- 资助金额:
$ 44.09万 - 项目类别:
The role of human RAD52 protein in genome stability
人类 RAD52 蛋白在基因组稳定性中的作用
- 批准号:
10582621 - 财政年份:2019
- 资助金额:
$ 44.09万 - 项目类别:
Double strand break repair maelstrom: causes, mechanisms and genome destabilizing consequences
双链断裂修复漩涡:原因、机制和基因组不稳定后果
- 批准号:
10387418 - 财政年份:2018
- 资助金额:
$ 44.09万 - 项目类别:
Double strand break repair maelstrom: causes, mechanisms and genome destabilizing consequences
双链断裂修复漩涡:原因、机制和基因组不稳定后果
- 批准号:
10406966 - 财政年份:2018
- 资助金额:
$ 44.09万 - 项目类别:
Double strand break repair maelstrom: causes, mechanisms and genome destabilizing consequences
双链断裂修复漩涡:原因、机制和基因组不稳定后果
- 批准号:
10159282 - 财政年份:2018
- 资助金额:
$ 44.09万 - 项目类别:
Amplification of Risk Caused by Mis-Routing of DNA Double-Strand Break Repair
DNA 双链断裂修复路径错误导致的风险放大
- 批准号:
8063644 - 财政年份:2008
- 资助金额:
$ 44.09万 - 项目类别:
Amplification of risk resulting from mis-routing of double-strand break repair
双链断裂修复路线错误导致风险放大
- 批准号:
8758960 - 财政年份:2008
- 资助金额:
$ 44.09万 - 项目类别:
Amplification of Risk Caused by Mis-Routing of DNA Double-Strand Break Repair
DNA 双链断裂修复错误路由导致的风险放大
- 批准号:
8274795 - 财政年份:2008
- 资助金额:
$ 44.09万 - 项目类别:
相似国自然基金
基于Bacillus subtilis 细胞传感器介导的肠道环境中结直肠癌相关生物标志物的动态检测策略
- 批准号:82372355
- 批准年份:2023
- 资助金额:48 万元
- 项目类别:面上项目
CRISPR传感技术对稻田微生物甲基汞关键基因的检测机制研究
- 批准号:42377456
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
基于微流控芯片的赤潮微藻及其生物毒素同步快速定量检测研究
- 批准号:42307568
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
一种用于生物呼吸标记物检测的中红外全固态超短脉冲激光器的研究
- 批准号:62305188
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于镍纳米粒子催化新型生物传感器研制及应用于中药残留检测
- 批准号:82360857
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
相似海外基金
Hyperpolarized 13C Metabolic Imaging of Tumorigenesis in the Liver
肝脏肿瘤发生的超极化 13C 代谢成像
- 批准号:
10727760 - 财政年份:2023
- 资助金额:
$ 44.09万 - 项目类别:
Modulation of epigenetic programming of tissue resident macrophage lineages to impact HIV-1 infection, maintenance, and persistence.
调节组织驻留巨噬细胞谱系的表观遗传编程以影响 HIV-1 感染、维持和持久性。
- 批准号:
10675934 - 财政年份:2023
- 资助金额:
$ 44.09万 - 项目类别:
Targeting host lipid metabolism to limit tissue damage in necrotizing fasciitis
靶向宿主脂质代谢以限制坏死性筋膜炎的组织损伤
- 批准号:
10639904 - 财政年份:2023
- 资助金额:
$ 44.09万 - 项目类别:
Using trained immunity-inhibiting nanobiologics to achieve tolerance of heart allografts in non-human primates
使用经过训练的免疫抑制纳米生物制剂来实现非人类灵长类动物同种异体心脏移植的耐受性
- 批准号:
10642598 - 财政年份:2023
- 资助金额:
$ 44.09万 - 项目类别:
Molecular Mechanisms of Pseudomonas aeruginosa Antibiotic Persistence in Monocultures and Microbial Communities
单一栽培和微生物群落中铜绿假单胞菌抗生素持久性的分子机制
- 批准号:
10749974 - 财政年份:2023
- 资助金额:
$ 44.09万 - 项目类别: