Double strand break repair maelstrom: causes, mechanisms and genome destabilizing consequences
双链断裂修复漩涡:原因、机制和基因组不稳定后果
基本信息
- 批准号:10623641
- 负责人:
- 金额:$ 44.09万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-06-06 至 2028-03-31
- 项目状态:未结题
- 来源:
- 关键词:Automobile DrivingBiological AssayCell SurvivalCellsChromosomesComplexComputer softwareCongenital AbnormalityCytidine DeaminaseDNA Double Strand BreakDNA RepairDNA Repair PathwayDNA Sequence RearrangementDNA biosynthesisDNA lesionDataDetectionDevelopmentDouble Strand Break RepairEventGeneticGenomeGenome StabilityGoalsHO nucleaseHumanKineticsKnowledgeMalignant NeoplasmsMammalsMeasuresMediatingMeiosisMethodologyMethodsMolecularMonitorMutationNamesNeurologicPathway interactionsPatternPositioning AttributeProteinsRAD52 geneRegulationResearchResolutionRoleSiteSyndromeSystemWorkYeastscell typechromosomal locationdata miningdesigndigitalearly detection biomarkersenvironmental stressorgenome sequencinghigh riskhuman diseaseinnovationprogramsrepairedtargeted treatmenttoolwhole genome
项目摘要
Accurate repair of DNA lesions is paramount to the survival of cells and to maintain their genomic stability.
Double-strand DNA breaks (DSBs) are the most lethal DNA lesion, and cells have evolved a variety of
mechanisms for their repair. While some DSB repair pathways are accurate, others can destabilize the
genome by creating mutations or chromosome rearrangements associated with cancer and other human
diseases. Our long-term goal is to identify factors that drive DSB repair into the maelstrom of deleterious DNA
repair pathways, and to characterize their molecular mechanisms. We focus on two such high-risk DSB repair
pathways: 1) break-induced replication (BIR), an unusual type of long-tract repair DNA synthesis that promotes
bursts of genetic instabilities; and 2) microhomology-mediated BIR (MMBIR), a replicative pathway involving
multiple template-switching events at positions of microhomologies that yields complex genomic
rearrangements. We will use an extensively characterized, powerful yeast system to study repair of a site-
specific HO-endonuclease-induced DSB to inform the design of studies in other systems. MIRA support
enabled significant progress in our characterization of BIR and MMBIR, including development of several
innovative tools. One of them, which we named AMBER (Assay for Monitoring BIR Elongation Rate), is a
droplet-digital-PCR-based method to measure BIR kinetics with unprecedented resolution. Using AMBER
during the next MIRA support cycle will allow us to identify the specific steps of BIR that are controlled by our
newly identified BIR driver protein candidates, including spindle assembly checkpoint proteins. We will also use
AMBER in our sensitive yeast BIR system to unravel the mechanisms of BIR regulation following its collision
with various replication obstacles, including characterizing the role of Rad52-dependent single-strand
annealing for BIR re-start after collision. The obtained results will shed light on the mechanism of Rad51-
independent BIR in yeast, which is a pathway that is likely similar to BIR events described in mammals.
Another approach that we developed with MIRA support enabled the detection of BIR events based on long
mutation clusters formed by BIR occurring in the presence of APOBEC (cytidine deaminase), and we propose
to apply this methodology here to detect BIR during yeast meiosis. Determining how frequently mutagenic BIR
might be used to repair meiotic DSBs is important because similar events can lead to birth defects in humans.
Finally, our new software, MMBSearch—developed based on our characterization of MMBIR in yeast—will be
used to identify specific conditions that predispose human cells to MMBIR events, which we recently found to
be frequent in cancer, but rare in non-cancerous cells. Applying MMBSearch to whole-genome sequencing
data will identify specific cancers, cell types, chromosomal locations and environmental stressors that promote
MMBIR. Overall, this research program will produce fundamental knowledge on the factors that promote risky
DSB repair pathways and the mechanisms of these pathways that can destabilize eukaryotic genomes.
DNA病变的准确修复对于细胞的存活和维持其基因组稳定性至关重要。
双链DNA断裂(DSB)是最致命的DNA病变,细胞已经进化了多种
维修的机制。虽然某些DSB维修途径是准确的,但其他DSB可以使
通过创建与癌症和其他人有关的突变或染色体重排来进行基因组
疾病。我们的长期目标是确定将DSB维修推向有害DNA漩涡的因素
修复途径,并表征其分子机制。我们专注于两个这样的高风险DSB修复
途径:1)突发诱导的复制(BIR),这是一种不寻常的长项修复DNA合成,可促进
遗传不稳定爆发; 2)微学介导的BIR(MMBIR),涉及的复制途径
在微观理学位置的多个模板切换事件,产生复杂的基因组
重排。我们将使用广泛特征的功能强大的酵母系统来研究站点的维修
特定的HO-核酸酶诱导的DSB,以告知其他系统中的研究设计。 mira支持
在我们对BIR和MMBIR的表征方面取得了重大进展,包括开发几个
创新工具。其中之一,我们将其命名为Amber(用于监视Bir伸长率的测定),是
基于液滴 - 数字PCR的方法,以前所未有的分辨率测量BIR动力学。使用琥珀
在下一个MIRA支持周期中,我们可以确定BIR的特定步骤
新确定的BIR驱动蛋白候选物,包括主轴组件检查点蛋白。我们还将使用
我们敏感的酵母BIR系统中的琥珀色,以揭示BIR碰撞后的机制
具有各种复制障碍,包括表征依赖Rad52的单链的作用
碰撞后退火重新开始。获得的结果将阐明Rad51-的机制
酵母中的独立BIR,这是一种可能与哺乳动物中描述的BIR事件相似的途径。
我们使用MIRA支持开发的另一种方法使得基于长期的BIR事件检测
由BIR形成的突变簇在存在APOBEC(胞苷脱氨酶)的情况下发生,我们建议
在此处应用这种方法以检测酵母减数分裂过程中的BIR。确定诱变BIR的频率
可能用于修复减数分裂DSB很重要,因为类似的事件可能导致人类的先天缺陷。
最后,我们的新软件MMBSEarch(根据我们对酵母中MMBIR的特征开发)将是
用于确定使人类细胞易受MMBIR事件的特定条件,我们最近发现
经常在癌症中,但在非癌细胞中很少见。将MMBSEarch应用于全基因组测序
数据将确定促进的特定癌症,细胞类型,染色体位置和环境压力源
mmbir。总体而言,该研究计划将对促进风险的因素产生基本知识
DSB修复途径和这些途径可能破坏真核基因组的机制。
项目成果
期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Quantitative assessment reveals the dominance of duplicated sequences in germline-derived extrachromosomal circular DNA.
- DOI:10.1073/pnas.2102842118
- 发表时间:2021-11-23
- 期刊:
- 影响因子:11.1
- 作者:Mouakkad-Montoya L;Murata MM;Sulovari A;Suzuki R;Osia B;Malkova A;Katsumata M;Giuliano AE;Eichler EE;Tanaka H
- 通讯作者:Tanaka H
Measuring the contributions of helicases to break-induced replication.
测量解旋酶对断裂诱导复制的贡献。
- DOI:10.1016/bs.mie.2022.02.025
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Yan,Zhenxin;Liu,Liping;Pham,Nhung;Thakre,PilendraK;Malkova,Anna;Ira,Grzegorz
- 通讯作者:Ira,Grzegorz
Break-Induced Replication: The Where, The Why, and The How.
- DOI:10.1016/j.tig.2018.04.002
- 发表时间:2018-07
- 期刊:
- 影响因子:0
- 作者:Kramara J;Osia B;Malkova A
- 通讯作者:Malkova A
Break-induced replication: unraveling each step.
- DOI:10.1016/j.tig.2022.03.011
- 发表时间:2022-07
- 期刊:
- 影响因子:11.4
- 作者:Liu, Liping;Malkova, Anna
- 通讯作者:Malkova, Anna
Single-strand annealing between inverted DNA repeats: Pathway choice, participating proteins, and genome destabilizing consequences.
- DOI:10.1371/journal.pgen.1007543
- 发表时间:2018-08
- 期刊:
- 影响因子:4.5
- 作者:Ramakrishnan S;Kockler Z;Evans R;Downing BD;Malkova A
- 通讯作者:Malkova A
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Anna L Malkova其他文献
Anna L Malkova的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Anna L Malkova', 18)}}的其他基金
The role of human RAD52 protein in genome stability
人类 RAD52 蛋白在基因组稳定性中的作用
- 批准号:
9763870 - 财政年份:2019
- 资助金额:
$ 44.09万 - 项目类别:
The role of human RAD52 protein in genome stability
人类 RAD52 蛋白在基因组稳定性中的作用
- 批准号:
9904590 - 财政年份:2019
- 资助金额:
$ 44.09万 - 项目类别:
The role of human RAD52 protein in genome stability
人类 RAD52 蛋白在基因组稳定性中的作用
- 批准号:
10361559 - 财政年份:2019
- 资助金额:
$ 44.09万 - 项目类别:
The role of human RAD52 protein in genome stability
人类 RAD52 蛋白在基因组稳定性中的作用
- 批准号:
10582621 - 财政年份:2019
- 资助金额:
$ 44.09万 - 项目类别:
Double strand break repair maelstrom: causes, mechanisms and genome destabilizing consequences
双链断裂修复漩涡:原因、机制和基因组不稳定后果
- 批准号:
10387418 - 财政年份:2018
- 资助金额:
$ 44.09万 - 项目类别:
Double strand break repair maelstrom: causes, mechanisms and genome destabilizing consequences
双链断裂修复漩涡:原因、机制和基因组不稳定后果
- 批准号:
10406966 - 财政年份:2018
- 资助金额:
$ 44.09万 - 项目类别:
Double strand break repair maelstrom: causes, mechanisms and genome destabilizing consequences
双链断裂修复漩涡:原因、机制和基因组不稳定后果
- 批准号:
10159282 - 财政年份:2018
- 资助金额:
$ 44.09万 - 项目类别:
Amplification of Risk Caused by Mis-Routing of DNA Double-Strand Break Repair
DNA 双链断裂修复错误路由导致的风险放大
- 批准号:
8274795 - 财政年份:2008
- 资助金额:
$ 44.09万 - 项目类别:
Amplification of Risk Caused by Mis-Routing of DNA Double-Strand Break Repair
DNA 双链断裂修复路径错误导致的风险放大
- 批准号:
8063644 - 财政年份:2008
- 资助金额:
$ 44.09万 - 项目类别:
Amplification of risk resulting from mis-routing of double-strand break repair
双链断裂修复路线错误导致风险放大
- 批准号:
8758960 - 财政年份:2008
- 资助金额:
$ 44.09万 - 项目类别:
相似国自然基金
DGT原位测定全氟辛酸的生物污损效应及其影响机制研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
DGT原位测定全氟辛酸的生物污损效应及其影响机制研究
- 批准号:42207312
- 批准年份:2022
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
集成微流控芯片应用于高通量精准生物检体测定
- 批准号:
- 批准年份:2020
- 资助金额:60 万元
- 项目类别:面上项目
硫酸盐还原菌生物膜活性的原位快速测定研究
- 批准号:41876101
- 批准年份:2018
- 资助金额:62.0 万元
- 项目类别:面上项目
冬虫夏草抗菌肽的序列测定及其生物学功能研究
- 批准号:81803848
- 批准年份:2018
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Targeting host lipid metabolism to limit tissue damage in necrotizing fasciitis
靶向宿主脂质代谢以限制坏死性筋膜炎的组织损伤
- 批准号:
10639904 - 财政年份:2023
- 资助金额:
$ 44.09万 - 项目类别:
Using trained immunity-inhibiting nanobiologics to achieve tolerance of heart allografts in non-human primates
使用经过训练的免疫抑制纳米生物制剂来实现非人类灵长类动物同种异体心脏移植的耐受性
- 批准号:
10642598 - 财政年份:2023
- 资助金额:
$ 44.09万 - 项目类别:
Hyperpolarized 13C Metabolic Imaging of Tumorigenesis in the Liver
肝脏肿瘤发生的超极化 13C 代谢成像
- 批准号:
10727760 - 财政年份:2023
- 资助金额:
$ 44.09万 - 项目类别:
Modulation of epigenetic programming of tissue resident macrophage lineages to impact HIV-1 infection, maintenance, and persistence.
调节组织驻留巨噬细胞谱系的表观遗传编程以影响 HIV-1 感染、维持和持久性。
- 批准号:
10675934 - 财政年份:2023
- 资助金额:
$ 44.09万 - 项目类别:
Molecular Mechanisms of Pseudomonas aeruginosa Antibiotic Persistence in Monocultures and Microbial Communities
单一栽培和微生物群落中铜绿假单胞菌抗生素持久性的分子机制
- 批准号:
10749974 - 财政年份:2023
- 资助金额:
$ 44.09万 - 项目类别: