Double strand break repair maelstrom: causes, mechanisms and genome destabilizing consequences
双链断裂修复漩涡:原因、机制和基因组不稳定后果
基本信息
- 批准号:10159282
- 负责人:
- 金额:$ 37.78万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-06-01 至 2023-05-31
- 项目状态:已结题
- 来源:
- 关键词:AffectAlgorithmsAreaAutomobile DrivingCell DeathCell SurvivalCellsChromosomal RearrangementComplexDNADNA Double Strand BreakDNA RepairDNA Repair PathwayDNA Sequence RearrangementDNA biosynthesisDNA lesionDangerousnessDevelopmentDiseaseDouble Strand Break RepairEukaryotaEventExperimental DesignsGeneticGenomeGenome StabilityGenomic InstabilityGenomicsGoalsHO nucleaseHumanHuman GenomeIn VitroJointsKineticsKnowledgeLesionMalignant NeoplasmsMediatingModelingMolecularMutationNeurologicOrganismPathway interactionsPatternPlant RootsPositioning AttributeProcessProteinsRegulationResearchRoleSingle-Stranded DNASiteStructureSyndromeSystemTherapeutic InterventionWorkYeastsgenetic approachgenome databasehigh riskhuman diseaseimprovedin vivointerestprogramsrepairedsoftware development
项目摘要
Maintaining genetic stability is of paramount importance for the survival of cells and organisms. Double-strand
DNA breaks (DSBs) are the most lethal DNA lesion threatening genomic stability, and cells have evolved a
variety of mechanisms for their repair. While some of the repair mechanisms are accurate, others are “risky”
and can further destabilize the genome, leading to cancer and other diseases in humans. The molecular
events that draw the intermediates of otherwise accurate repair pathways into a “maelstrom” of destabilizing
DNA repair mechanisms, where these intermediates are then processed through risky DNA repair pathways,
remain unexplored. The goal of our research is to understand how DSB repair is channeled into the deleterious
repair pathways, with particular emphasis on three DSB repair phenomena: 1) break-induced replication (BIR),
an unusual type of long-tract repair DNA synthesis that promotes bursts of genetic instabilities; 2)
microhomology-mediated BIR (MMBIR), a replicative pathway involving multiple template switching events at
positions of microhomologies that yields complex genomic rearrangements; and 3) the transformation of long
single-strand DNA intermediates of DSB repair into “toxic” joint molecules promoting cell death. As a starting
point, we are using our dependable and powerful system in yeast, where a single DSB is initiated by a site-
specific HO endonuclease; we have demonstrated that all three of the repair events of interest can be used to
repair the lesion in this system. The knowledge obtained using this system – the repair mechanisms,
intermediates, participating proteins, and mutation patterns – is used to inform the experimental design of
studies that will evaluate these pathways in other yeast and mammalian systems. Conceptually, the long-term
goals are the same across projects and involve three primary areas of inquiry. First, using sensitive genetic
approaches, proteins and DNA motifs whose presence affect the funneling of the repair intermediates into the
“maelstrom” of destabilizing repair mechanisms will be identified. Second, a combination of in vivo and in vitro
approaches will be used to model and investigate the cell's decision points to understand the circumstances
(structures, kinetics, participating proteins, etc.) that draw intermediates into high-risk and/or toxic repair
pathways. Third, the patterns of mutations and chromosomal rearrangements that result from the deleterious
repair pathways will be evaluated, and computational approaches will be used to apply these findings to
human genome databases. To this end, MMBIRFinder, new software developed from previous research, will
be used to detect complex genetic changes that cannot be found by currently available algorithms. Overall, this
research program will bring improved clarity regarding the mechanisms of DNA repair intermediate processing,
which will uncover factors that influence the regulation of dangerous repair pathways and result in
destabilization of the genome in eukaryotes.
维持遗传稳定性对于细胞和生物体的生存至关重要。
DNA 断裂 (DSB) 是威胁基因组稳定性的最致命的 DNA 损伤,细胞已经进化出一种
虽然一些修复机制是准确的,但另一些则是“有风险的”。
并可能进一步破坏基因组的稳定性,导致人类癌症和其他疾病。
将原本准确的修复途径的中间体拖入不稳定“漩涡”的事件
DNA 修复机制,然后通过危险的 DNA 修复途径处理这些中间体,
我们研究的目标是了解 DSB 修复如何转化为有害物质。
修复途径,特别强调三种 DSB 修复现象:1)断裂诱导复制(BIR),
一种不寻常的长链修复 DNA 合成,可促进遗传不稳定性的爆发 2)
微同源介导的 BIR (MMBIR),一种复制途径,涉及多个模板切换事件
产生复杂基因组重排的微同源性位置;3) 长链的转化;
DSB 的单链 DNA 中间体修复成“有毒”联合分子,促进细胞死亡。
一点,我们正在酵母中使用我们的依赖且强大的系统,其中单个 DSB 由一个位点启动-
特定的 H2O 核酸内切酶;我们已经证明所有三个感兴趣的修复事件都可用于
修复该系统中的损伤 使用该系统获得的知识——修复机制,
中间体、参与蛋白质和突变模式——用于为实验设计提供信息
从概念上讲,将评估其他酵母和哺乳动物系统中的这些途径的研究。
各个项目的目标都是相同的,并且涉及三个主要的研究领域:首先,使用敏感的遗传。
方法、蛋白质和 DNA 基序的存在影响修复中间体进入
其次,体内和体外的结合将确定不稳定修复机制的“漩涡”。
方法将用于建模和研究细胞的决策点以了解情况
(结构、动力学、参与蛋白质等)将中间体引入高风险和/或有毒修复
第三,有害物质引起的突变和染色体重排的模式。
将评估修复途径,并使用计算方法将这些发现应用于
为此,基于先前研究开发的新软件 MMBIRFinder 将实现这一目标。
可用于检测当前可用算法无法发现的复杂遗传变化。
研究计划将提高 DNA 修复中间加工机制的清晰度,
这将揭示影响危险修复途径调节的因素并导致
真核生物基因组的不稳定。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Anna L Malkova其他文献
Anna L Malkova的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Anna L Malkova', 18)}}的其他基金
The role of human RAD52 protein in genome stability
人类 RAD52 蛋白在基因组稳定性中的作用
- 批准号:
9904590 - 财政年份:2019
- 资助金额:
$ 37.78万 - 项目类别:
The role of human RAD52 protein in genome stability
人类 RAD52 蛋白在基因组稳定性中的作用
- 批准号:
9763870 - 财政年份:2019
- 资助金额:
$ 37.78万 - 项目类别:
The role of human RAD52 protein in genome stability
人类 RAD52 蛋白在基因组稳定性中的作用
- 批准号:
10361559 - 财政年份:2019
- 资助金额:
$ 37.78万 - 项目类别:
The role of human RAD52 protein in genome stability
人类 RAD52 蛋白在基因组稳定性中的作用
- 批准号:
10582621 - 财政年份:2019
- 资助金额:
$ 37.78万 - 项目类别:
Double strand break repair maelstrom: causes, mechanisms and genome destabilizing consequences
双链断裂修复漩涡:原因、机制和基因组不稳定后果
- 批准号:
10387418 - 财政年份:2018
- 资助金额:
$ 37.78万 - 项目类别:
Double strand break repair maelstrom: causes, mechanisms and genome destabilizing consequences
双链断裂修复漩涡:原因、机制和基因组不稳定后果
- 批准号:
10623641 - 财政年份:2018
- 资助金额:
$ 37.78万 - 项目类别:
Double strand break repair maelstrom: causes, mechanisms and genome destabilizing consequences
双链断裂修复漩涡:原因、机制和基因组不稳定后果
- 批准号:
10406966 - 财政年份:2018
- 资助金额:
$ 37.78万 - 项目类别:
Amplification of Risk Caused by Mis-Routing of DNA Double-Strand Break Repair
DNA 双链断裂修复错误路由导致的风险放大
- 批准号:
8274795 - 财政年份:2008
- 资助金额:
$ 37.78万 - 项目类别:
Amplification of Risk Caused by Mis-Routing of DNA Double-Strand Break Repair
DNA 双链断裂修复路径错误导致的风险放大
- 批准号:
8063644 - 财政年份:2008
- 资助金额:
$ 37.78万 - 项目类别:
Amplification of risk resulting from mis-routing of double-strand break repair
双链断裂修复路线错误导致风险放大
- 批准号:
8758960 - 财政年份:2008
- 资助金额:
$ 37.78万 - 项目类别:
相似国自然基金
面向二氧化碳封存的高可扩展时空并行区域分解算法及其大规模应用
- 批准号:12371366
- 批准年份:2023
- 资助金额:43.5 万元
- 项目类别:面上项目
无界区域中非局部Klein-Gordon-Schrödinger方程的保结构算法研究
- 批准号:12301508
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于深度强化学习的约束多目标群智算法及多区域热电调度应用
- 批准号:62303197
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
面向多区域单元化生产线协同调度问题的自动算法设计研究
- 批准号:62303204
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
颜面缺损修复三维目标参照数据构建的区域权重非刚性配准算法研究
- 批准号:
- 批准年份:2022
- 资助金额:52 万元
- 项目类别:面上项目
相似海外基金
Fluency from Flesh to Filament: Collation, Representation, and Analysis of Multi-Scale Neuroimaging data to Characterize and Diagnose Alzheimer's Disease
从肉体到细丝的流畅性:多尺度神经影像数据的整理、表示和分析,以表征和诊断阿尔茨海默病
- 批准号:
10462257 - 财政年份:2023
- 资助金额:
$ 37.78万 - 项目类别:
Previvors Recharge: A Resilience Program for Cancer Previvors
癌症预防者恢复活力计划:癌症预防者恢复力计划
- 批准号:
10698965 - 财政年份:2023
- 资助金额:
$ 37.78万 - 项目类别:
Dynamic neural coding of spectro-temporal sound features during free movement
自由运动时谱时声音特征的动态神经编码
- 批准号:
10656110 - 财政年份:2023
- 资助金额:
$ 37.78万 - 项目类别:
HEAR-HEARTFELT (Identifying the risk of Hospitalizations or Emergency depARtment visits for patients with HEART Failure in managed long-term care through vErbaL communicaTion)
倾听心声(通过口头交流确定长期管理护理中的心力衰竭患者住院或急诊就诊的风险)
- 批准号:
10723292 - 财政年份:2023
- 资助金额:
$ 37.78万 - 项目类别: