Double strand break repair maelstrom: causes, mechanisms and genome destabilizing consequences
双链断裂修复漩涡:原因、机制和基因组不稳定后果
基本信息
- 批准号:10406966
- 负责人:
- 金额:$ 37.78万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-06-01 至 2023-05-31
- 项目状态:已结题
- 来源:
- 关键词:AffectAlgorithmsAreaAutomobile DrivingCell DeathCell SurvivalCellsChromosomal RearrangementComplexDNADNA Double Strand BreakDNA RepairDNA Repair PathwayDNA Sequence RearrangementDNA biosynthesisDNA lesionDangerousnessDevelopmentDiseaseDouble Strand Break RepairEukaryotaEventExperimental DesignsGeneticGenomeGenome StabilityGenomic InstabilityGenomicsGoalsHO nucleaseHumanHuman GenomeIn VitroJointsKineticsKnowledgeLesionMalignant NeoplasmsMediatingModelingMolecularMutationNeurologicOrganismPathway interactionsPatternPlant RootsPositioning AttributeProcessProteinsRegulationResearchRoleSingle-Stranded DNASiteStructureSyndromeSystemTherapeutic InterventionWorkYeastsgenetic approachgenome databasehigh riskhuman diseaseimprovedin vivointerestprogramsrepairedsoftware development
项目摘要
Maintaining genetic stability is of paramount importance for the survival of cells and organisms. Double-strand
DNA breaks (DSBs) are the most lethal DNA lesion threatening genomic stability, and cells have evolved a
variety of mechanisms for their repair. While some of the repair mechanisms are accurate, others are “risky”
and can further destabilize the genome, leading to cancer and other diseases in humans. The molecular
events that draw the intermediates of otherwise accurate repair pathways into a “maelstrom” of destabilizing
DNA repair mechanisms, where these intermediates are then processed through risky DNA repair pathways,
remain unexplored. The goal of our research is to understand how DSB repair is channeled into the deleterious
repair pathways, with particular emphasis on three DSB repair phenomena: 1) break-induced replication (BIR),
an unusual type of long-tract repair DNA synthesis that promotes bursts of genetic instabilities; 2)
microhomology-mediated BIR (MMBIR), a replicative pathway involving multiple template switching events at
positions of microhomologies that yields complex genomic rearrangements; and 3) the transformation of long
single-strand DNA intermediates of DSB repair into “toxic” joint molecules promoting cell death. As a starting
point, we are using our dependable and powerful system in yeast, where a single DSB is initiated by a site-
specific HO endonuclease; we have demonstrated that all three of the repair events of interest can be used to
repair the lesion in this system. The knowledge obtained using this system – the repair mechanisms,
intermediates, participating proteins, and mutation patterns – is used to inform the experimental design of
studies that will evaluate these pathways in other yeast and mammalian systems. Conceptually, the long-term
goals are the same across projects and involve three primary areas of inquiry. First, using sensitive genetic
approaches, proteins and DNA motifs whose presence affect the funneling of the repair intermediates into the
“maelstrom” of destabilizing repair mechanisms will be identified. Second, a combination of in vivo and in vitro
approaches will be used to model and investigate the cell's decision points to understand the circumstances
(structures, kinetics, participating proteins, etc.) that draw intermediates into high-risk and/or toxic repair
pathways. Third, the patterns of mutations and chromosomal rearrangements that result from the deleterious
repair pathways will be evaluated, and computational approaches will be used to apply these findings to
human genome databases. To this end, MMBIRFinder, new software developed from previous research, will
be used to detect complex genetic changes that cannot be found by currently available algorithms. Overall, this
research program will bring improved clarity regarding the mechanisms of DNA repair intermediate processing,
which will uncover factors that influence the regulation of dangerous repair pathways and result in
destabilization of the genome in eukaryotes.
保持遗传稳定性对于细胞和组织的存活至关重要。双链
DNA断裂(DSB)是威胁基因组稳定性的最致命的DNA病变,细胞已经进化
修复的各种机制。虽然某些维修机制是准确的,但另一些是“风险的”
并可能进一步破坏基因组,从而导致人类癌症和其他疾病。分子
将原本准确修复途径的中间体吸引到破坏稳定的“漩涡”的事件
DNA修复机制,然后通过风险的DNA修复途径处理这些中间体,
保持出乎意料。我们研究的目的是了解如何将DSB维修引入有害
修复途径,特别强调三个DSB修复现象:1)破裂引起的复制(BIR),
一种不寻常的长期修复DNA合成,促进了遗传不稳定性的爆发; 2)
微学介导的BIR(MMBIR),复制途径涉及多个模板切换事件
产生复杂基因组重排的微观学位置; 3)长的转变
DSB修复的单链DNA中间体促进细胞死亡的“有毒”关节分子。作为开始
重点,我们在酵母中使用了我们可靠且功能强大的系统,在该酵母中,单个DSB是由站点启动的
特定的HO核酸内切酶;我们已经证明,所有感兴趣的维修事件都可以用作
修复该系统中的病变。使用该系统获得的知识 - 维修机制,
中间体,参与蛋白质和突变模式 - 用于告知实验设计
将在其他酵母和哺乳动物系统中评估这些途径的研究。从概念上讲,长期
在项目之间的目标是相同的,涉及三个主要探究领域。首先,使用敏感遗传
接近,蛋白质和DNA基序,其存在影响修复中间体的漏斗
将确定破坏维修机制的“漩涡”。第二,体内和体外的组合
方法将用于建模和调查细胞的决策点以了解情况
(结构,动力学,参与蛋白等)将中间体吸引到高风险和/或有毒的维修中
途径。第三,由有害的突变和染色体重排的模式
将评估维修途径,并将使用计算方法将这些发现应用于
人类基因组数据库。为此,从以前的研究开发的新软件mmbirfinder将
用于检测当前可用算法无法找到的复杂遗传变化。总体而言,这
研究计划将提高有关DNA修复中间处理机制的清晰度,
这将发现影响危险维修途径调节的因素,并导致
真核生物中基因组的不稳定。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Anna L Malkova其他文献
Anna L Malkova的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Anna L Malkova', 18)}}的其他基金
The role of human RAD52 protein in genome stability
人类 RAD52 蛋白在基因组稳定性中的作用
- 批准号:
9904590 - 财政年份:2019
- 资助金额:
$ 37.78万 - 项目类别:
The role of human RAD52 protein in genome stability
人类 RAD52 蛋白在基因组稳定性中的作用
- 批准号:
9763870 - 财政年份:2019
- 资助金额:
$ 37.78万 - 项目类别:
The role of human RAD52 protein in genome stability
人类 RAD52 蛋白在基因组稳定性中的作用
- 批准号:
10361559 - 财政年份:2019
- 资助金额:
$ 37.78万 - 项目类别:
The role of human RAD52 protein in genome stability
人类 RAD52 蛋白在基因组稳定性中的作用
- 批准号:
10582621 - 财政年份:2019
- 资助金额:
$ 37.78万 - 项目类别:
Double strand break repair maelstrom: causes, mechanisms and genome destabilizing consequences
双链断裂修复漩涡:原因、机制和基因组不稳定后果
- 批准号:
10387418 - 财政年份:2018
- 资助金额:
$ 37.78万 - 项目类别:
Double strand break repair maelstrom: causes, mechanisms and genome destabilizing consequences
双链断裂修复漩涡:原因、机制和基因组不稳定后果
- 批准号:
10623641 - 财政年份:2018
- 资助金额:
$ 37.78万 - 项目类别:
Double strand break repair maelstrom: causes, mechanisms and genome destabilizing consequences
双链断裂修复漩涡:原因、机制和基因组不稳定后果
- 批准号:
10159282 - 财政年份:2018
- 资助金额:
$ 37.78万 - 项目类别:
Amplification of Risk Caused by Mis-Routing of DNA Double-Strand Break Repair
DNA 双链断裂修复路径错误导致的风险放大
- 批准号:
8063644 - 财政年份:2008
- 资助金额:
$ 37.78万 - 项目类别:
Amplification of risk resulting from mis-routing of double-strand break repair
双链断裂修复路线错误导致风险放大
- 批准号:
8758960 - 财政年份:2008
- 资助金额:
$ 37.78万 - 项目类别:
Amplification of Risk Caused by Mis-Routing of DNA Double-Strand Break Repair
DNA 双链断裂修复错误路由导致的风险放大
- 批准号:
8274795 - 财政年份:2008
- 资助金额:
$ 37.78万 - 项目类别:
相似国自然基金
无界区域中非局部Klein-Gordon-Schrödinger方程的保结构算法研究
- 批准号:12301508
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
感兴趣区域驱动的主动式采样CT成像算法研究
- 批准号:62301532
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
面向多区域单元化生产线协同调度问题的自动算法设计研究
- 批准号:62303204
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于深度强化学习的约束多目标群智算法及多区域热电调度应用
- 批准号:62303197
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
面向二氧化碳封存的高可扩展时空并行区域分解算法及其大规模应用
- 批准号:12371366
- 批准年份:2023
- 资助金额:43.5 万元
- 项目类别:面上项目
相似海外基金
Fluency from Flesh to Filament: Collation, Representation, and Analysis of Multi-Scale Neuroimaging data to Characterize and Diagnose Alzheimer's Disease
从肉体到细丝的流畅性:多尺度神经影像数据的整理、表示和分析,以表征和诊断阿尔茨海默病
- 批准号:
10462257 - 财政年份:2023
- 资助金额:
$ 37.78万 - 项目类别:
A Mobile Health Application to Detect Absence Seizures using Hyperventilation and Eye-Movement Recordings
一款使用过度换气和眼动记录检测失神癫痫发作的移动健康应用程序
- 批准号:
10696649 - 财政年份:2023
- 资助金额:
$ 37.78万 - 项目类别:
Characterizing neuroimaging 'brain-behavior' model performance bias in rural populations
表征农村人口神经影像“大脑行为”模型的表现偏差
- 批准号:
10752053 - 财政年份:2023
- 资助金额:
$ 37.78万 - 项目类别:
Bioethical, Legal, and Anthropological Study of Technologies (BLAST)
技术的生物伦理、法律和人类学研究 (BLAST)
- 批准号:
10831226 - 财政年份:2023
- 资助金额:
$ 37.78万 - 项目类别: