Psychosis Risk Evaluation, Data Integration and Computational Technologies (PREDICT): Data Processing, Analysis, and Coordination Center
精神病风险评估、数据集成和计算技术 (PREDICT):数据处理、分析和协调中心
基本信息
- 批准号:10621232
- 负责人:
- 金额:$ 467.42万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-09-09 至 2025-05-31
- 项目状态:未结题
- 来源:
- 关键词:AddressAdolescentAffectAlgorithmsAnxiety DisordersArtificial IntelligenceAttenuatedBehaviorBig DataBiological MarkersChildClinicalClinical TrialsClinical stratificationCollectionCommon Data ElementCommunitiesCommunity OutreachComputer AnalysisComputer softwareComputersDataData AggregationData AnalysesData CollectionData SetDatabasesDevelopmentDiseaseDisease remissionEarly InterventionEarly identificationEnrollmentEnsureEthicsEvaluationFAIR principlesFollow-Up StudiesFundingFutureGoalsHeterogeneityHuman ResourcesImpaired cognitionIndividualInformaticsInfrastructureInstructionInterventionLeadLeadershipLongterm Follow-upMachine LearningMeasuresMental disordersMeta-AnalysisMethodsMonitorMoodsMotivationNational Institute of Mental HealthOnline SystemsOutcomeOutputPerceptionPersonsProceduresProcessProtocols documentationPsychosesQuality ControlRecommendationRecoveryResearchResearch PersonnelRiskSafetySamplingSchizophreniaScientistSecureSiteSocial FunctioningStandardizationSubstance Use DisorderSymptomsTechnologyThinkingTimeTrainingUnited StatesValidationVisualization softwareadverse outcomeanalytical toolattenuated psychosis syndromebioinformatics infrastructurebiomarker identificationbiomarker validationcandidate identificationcandidate markerclinical heterogeneityclinical high risk for psychosisclinical predictive modelclinical riskclinical subtypesclinically relevantcloud basedcohortcomputerized data processingdata acquisitiondata archivedata dictionarydata disseminationdata harmonizationdata infrastructuredata integrationdata repositorydata toolsdeep learningdemographicsdesigndisabilityeffective interventionexperienceflexibilityfunctional declinefunctional disabilityhigh riskhigh risk populationimprovedinclusion criteriainnovationmeetingsmembermultidisciplinarymultimodal datamultimodalitymultiple data typesoutcome predictionpersistent symptomprediction algorithmpredictive markerpreventprospectivepsychosis riskpsychoticpsychotic symptomsquality assurancerecruitresearch studyresilienceresponserisk predictionrisk stratificationschizophrenia risksuccesstherapy developmenttoolworking group
项目摘要
The “clinical high risk” (CHR) for psychosis syndrome is an antecedent period characterized by attenuated
psychotic symptoms that are marked by subtle deviations from normal development in thinking, motivation,
affect, behavior, and a decline in functioning. Early intervention in this CHR population is critical to prevent
psychosis onset as well as other adverse outcomes. However, the presentation of symptoms and subsequent
course is highly variable, and there is a paucity of biomarkers to guide treatment development. Thus, to improve
predictive models that are clinically relevant, several issues need to be addressed: 1) focusing on outcomes
beyond psychosis; 2) taking into account heterogeneity in samples and outcomes; and 3) integrating data sets
with a broad array of variables using innovative algorithms to overcome variability across studies. To address
these challenges, the proposed “Psychosis Risk Evaluation Data Integration and Computational Technologies:
Data Processing, Analysis, and Coordination Center” (PREDICT-DPACC) brings together a multidisciplinary
team of highly experienced researchers with proven capabilities in all aspects of large-scale studies, CHR
studies, as well as computational expertise. The ultimate goal is to identify new CHR biomarkers, and CHR
subtypes that will enhance future clinical trials. To do so, the PREDICT-DPACC will 1) aggregate extant CHR-
related data sets from legacy datasets; 2) provide collaborative management, direction, data processing and
coordination for new U01 multisite network(s); and 3) develop and apply advanced algorithms to identify
biomarkers that predict outcomes, and to stratify CHR into subtypes based on outcome trajectories, first from
the extant data and then refined and applied to the new data. The PREDICT-DPACC team has the broad,
comprehensive, and robust infrastructure that is sufficiently flexible to accommodate the inclusion of multiple
data types and to optimally address the needs of the CHR U01 network(s). Carefully selected extant data will be
rapidly obtained, processed, and uploaded to the NIMH Data Archive (NDA). Proposed analysis methods are
powerful and robust, leveraging the expertise and experience of computer scientist developers, and experienced
clinical researchers. The U01 network(s) will be coordinated by a team that is experienced in managing large
studies, familiar with the needs of such studies, flexible, and is knowledgeable in all aspects of CHR studies,
including measures, outcomes, biomarkers, and cohorts. Upon meeting the goals of this U24, and the supported
U01 network(s), the expected outcomes of the PREDICT-DPACC will be new predictive biomarkers for CHR
outcomes, new definitions of CHR subtypes that are clinically useful, and new curated and comprehensive CHR
datasets (extant and new) as well as processing tools and prediction algorithms that are shared with the research
community through the NIMH Data Archive.
精神病综合征的“临床高风险”(CHR)是一个前期,其特征是衰减
精神病符号以偏离思维,动力,动力,动机的正常发展为标志的精神病符号
影响,行为和功能下降。早期干预该CHR人群对于防止
精神病发作以及其他不良结果。但是,症状及其后续的表现
当然是高度可变的,并且存在生物标志物来指导治疗的发展。那是为了改善
在临床上相关的预测模型,需要解决一些问题:1)关注结果
超越精神病; 2)考虑样品和结果中的异质性; 3)集成数据集
使用创新算法来克服整个研究的可变性,多种变量。解决
这些挑战是拟议的“精神病风险评估数据整合和计算技术:
数据处理,分析和协调中心”(预测DPACC)汇集了多学科
由经验丰富的研究人员组成的团队在大规模研究的各个方面都具有良好的能力,CHR
研究以及计算专业知识。最终目标是识别新的CHR生物标志物和CHR
亚型将增强未来的临床试验。为此,预测DPACC将1)汇总额外的chr-
来自旧数据集的相关数据集; 2)提供协作管理,指导,数据处理和
新U01多站点网络的协调; 3)开发和应用高级算法以识别
预测结果并根据结果轨迹将CHR分类为亚型的生物标志物,首先是
数据范围,然后完善并应用于新数据。预测DPACC团队拥有广泛的
综合,强大的基础设施,足以容纳多个
数据类型并最佳地满足CHR U01网络的需求。精心选择的范围数据将是
迅速获得,处理和上传到NIMH数据存档(NDA)。提出的分析方法是
强大而健壮,利用计算机科学家开发人员的专业知识和经验,并经验丰富
临床研究人员。 U01网络将由一个在管理大型方面经验丰富的团队协调
研究,熟悉此类研究的需求,灵活,并且在CHR研究的各个方面都有知识,
包括措施,结果,生物标志物和同类。达到了U24的目标以及受支持的目标后
U01网络,预测DPACC的预期结果将是CHR的新预测生物标志物
结果,临床上有用的ChR子类型的新定义以及新的策划和全面的CHR
与研究共享的数据集(现有和新)以及处理工具和预测算法
通过NIMH数据存档进行社区。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Rene S. Kahn其他文献
P582. Local and Global Brain Ageing in Cognitive Subgroups of Early Psychosis
- DOI:
10.1016/j.biopsych.2022.02.819 - 发表时间:
2022-05-01 - 期刊:
- 影响因子:
- 作者:
Shalaila Haas;Ruiyang Ge;Nicole Sanford;Amirhossein Modabbernia;Abraham Reichenberg;Heather Whalley;Rene S. Kahn;Sophia Frangou - 通讯作者:
Sophia Frangou
Two Neuroanatomical Subtypes of Schizophrenia Defined by Multi-Site Machine Learning
- DOI:
10.1016/j.biopsych.2020.02.097 - 发表时间:
2020-05-01 - 期刊:
- 影响因子:
- 作者:
Daniel Wolf;Ganesh Chand;Dominic Dwyer;Guray Erus;Aristeidis Sotiras;Erdem Varol;Dhivya Srinivasan;Jimit Doshi;Raymond Pomponio;Alessandro Pigoni;Paola Dazzan;Rene S. Kahn;Hugo G. Schnack;Marcus V. Zanetti;Eva Meisenzahl;Geraldo F. Busatto;Benedicto Crespo-Facorro;Christos Pantelis;Stephen Wood;Chuanjun Zhuo - 通讯作者:
Chuanjun Zhuo
Poster #162 DISTURBED SELF-AGENCY IN SCHIZOPHRENIA DUE TO ABNORMAL IMPLICIT (BUT NOT EXPLICIT) PROCESSING OF ACTION-OUTCOME INFORMATION
- DOI:
10.1016/s0920-9964(12)70734-x - 发表时间:
2012-04-01 - 期刊:
- 影响因子:
- 作者:
Robert A. Renes;Lisanne Vermeulen;Rene S. Kahn;Henk Aarts;Neeltje E. van Haren - 通讯作者:
Neeltje E. van Haren
Three Distinct Neuroanatomical Subtypes of Autism Spectrum Disorder, Revealed via Machine Learning, and Their Similarities With Schizophrenia Subtypes
- DOI:
10.1016/j.biopsych.2021.02.931 - 发表时间:
2021-05-01 - 期刊:
- 影响因子:
- 作者:
Gyujoon Hwang;Edward S. Brodkin;Ganesh B. Chand;Dominic B. Dwyer;Junhao Wen;Guray Erus;Jimit Doshi;Dhivya Srinivasan;Erdem Varol;Aristeidis Sotiras;Paola Dazzan;Rene S. Kahn;Hugo G. Schnack;Marcus V. Zanetti;Eva Meisenzahl;Geraldo F. Busatto;Benedicto Crespo-Facorro;Christos Pantelis;Stephen J. Wood;Chuanjun Zhuo - 通讯作者:
Chuanjun Zhuo
Poster #53 CORTICAL THICKNESS AND CORTICAL SURFACE IN SCHIZOPHRENIA: TWO DISTINCT BUT RELEVANT PROCESSES?
- DOI:
10.1016/s0920-9964(12)70886-1 - 发表时间:
2012-04-01 - 期刊:
- 影响因子:
- 作者:
Neeltje E. van Haren;Hugo G. Schnack;Wiepke Cahn;Hilleke E. Hulshoff Pol;Rene S. Kahn - 通讯作者:
Rene S. Kahn
Rene S. Kahn的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Rene S. Kahn', 18)}}的其他基金
Psychosis Risk Evaluation, Data Integration and Computational Technologies (PREDICT): Data Processing, Analysis, and Coordination Center
精神病风险评估、数据集成和计算技术 (PREDICT):数据处理、分析和协调中心
- 批准号:
10457174 - 财政年份:2020
- 资助金额:
$ 467.42万 - 项目类别:
Training the next generation of clinical neuroscientists
培训下一代临床神经科学家
- 批准号:
10390467 - 财政年份:2020
- 资助金额:
$ 467.42万 - 项目类别:
Psychosis Risk Evaluation, Data Integration and Computational Technologies (PREDICT): Data Processing, Analysis, and Coordination Center
精神病风险评估、数据集成和计算技术 (PREDICT):数据处理、分析和协调中心
- 批准号:
10409839 - 财政年份:2020
- 资助金额:
$ 467.42万 - 项目类别:
Training the next generation of clinical neuroscientists
培训下一代临床神经科学家
- 批准号:
10649573 - 财政年份:2020
- 资助金额:
$ 467.42万 - 项目类别:
Psychosis Risk Evaluation, Data Integration and Computational Technologies (PREDICT): Data Processing, Analysis, and Coordination Center
精神病风险评估、数据集成和计算技术 (PREDICT):数据处理、分析和协调中心
- 批准号:
10092398 - 财政年份:2020
- 资助金额:
$ 467.42万 - 项目类别:
Psychosis Risk Evaluation, Data Integration and Computational Technologies (PREDICT): Data Processing, Analysis, and Coordination Center
精神病风险评估、数据集成和计算技术 (PREDICT):数据处理、分析和协调中心
- 批准号:
10912925 - 财政年份:2020
- 资助金额:
$ 467.42万 - 项目类别:
Psychosis Risk Evaluation, Data Integration and Computational Technologies (PREDICT): Data Processing, Analysis, and Coordination Center
精神病风险评估、数据集成和计算技术 (PREDICT):数据处理、分析和协调中心
- 批准号:
10256796 - 财政年份:2020
- 资助金额:
$ 467.42万 - 项目类别:
相似国自然基金
大气污染物对青少年心理健康的影响机制研究
- 批准号:42377437
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
心肺耐力对青少年执行功能影响效应及其特定脑区激活状态的多民族研究
- 批准号:82373595
- 批准年份:2023
- 资助金额:47 万元
- 项目类别:面上项目
中国父母情绪教养行为对青少年非自杀性自伤的影响及其机制
- 批准号:32300894
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
miR-125b-1-3p介导童年期不良经历影响青少年自伤行为易感性的队列研究
- 批准号:82373596
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
青春期发育对青少年心理行为发展的影响及生理机制
- 批准号:32300888
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Executive functions in urban Hispanic/Latino youth: exposure to mixture of arsenic and pesticides during childhood
城市西班牙裔/拉丁裔青年的执行功能:童年时期接触砷和农药的混合物
- 批准号:
10751106 - 财政年份:2024
- 资助金额:
$ 467.42万 - 项目类别:
Expanding minority youth access to evidence-based care: A pilot effectiveness trial of a digital mental health intervention
扩大少数族裔青年获得循证护理的机会:数字心理健康干预措施的试点有效性试验
- 批准号:
10647287 - 财政年份:2023
- 资助金额:
$ 467.42万 - 项目类别:
Application of the Telemedicine for Reach, Education, Access, and Treatment delivery model to engage emerging adults in Diabetes Self-Management Education and Support (TREAT-ED)
应用远程医疗覆盖、教育、获取和治疗提供模式,让新兴成年人参与糖尿病自我管理教育和支持 (TREAT-ED)
- 批准号:
10651947 - 财政年份:2023
- 资助金额:
$ 467.42万 - 项目类别:
Development and Production of Standardized Reference Diets for Zebrafish Research
斑马鱼研究标准化参考饲料的开发和生产
- 批准号:
10823702 - 财政年份:2023
- 资助金额:
$ 467.42万 - 项目类别:
Determining the effect of early resource scarcity on adolescent addiction-related behavior and cell-type specific transcription
确定早期资源稀缺对青少年成瘾相关行为和细胞类型特异性转录的影响
- 批准号:
10825012 - 财政年份:2023
- 资助金额:
$ 467.42万 - 项目类别: