Deep learning of drug sensitivity and genetic dependency of pediatric cancer cells

儿科癌细胞药物敏感性和遗传依赖性的深度学习

基本信息

  • 批准号:
    10620367
  • 负责人:
  • 金额:
    $ 24.9万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-03-01 至 2025-06-30
  • 项目状态:
    未结题

项目摘要

Summary/Abstract The development of novel therapies for pediatric cancers, the second leading cause of death in children, is challenging due to the lack of comprehensive pharmacogenomics resources, unlike the well-established ones in adult cancers. However, breakthroughs in deep learning methods allow learning of intricate pharmacogenomics patterns with unprecedented performance. With a uniquely cross-disciplinary background, the candidate for this proposed K99/R00 has already, as a postdoctoral fellow, (i) developed and published several deep learning models that accurately predicted adult cancer cells’ drug sensitivity and genetic dependency using high- throughput genomics profiles, and (ii) demonstrated the feasibility of transferring the model to predict tumors by a ‘transfer learning’ design. The candidate will extend this research to study pediatric cancers and test the central hypothesis that deep learning extracts genomics signatures to predict the responses of pediatric cancer cells to chemical and genetic perturbations. The proposed study will develop novel deep learning models for predicting drug sensitivity and/or genetic dependency for (Aim 1) currently un-screened pediatric cancer cell lines by learning from screens of adult cells, and (Aim 2) pediatric tumors by learning from adult and/or pediatric cells. Prediction results will be validated by in vitro experiments and data collected from patient-derived xenografts. The proposed study is the first attempt to employ modern computational methods to advance pharmacogenomics studies of pediatric cancer, which would be difficult and costly to pursue via biological assays. Findings will shed light on the optimal drugs and novel therapeutic targets for pediatric malignancies, leading to an optimal and efficient design of preclinical tests. The candidate has a remarkable track record of bioinformatics studies of adult cancer genomics. The focus of this K99 training plan is to develop in-depth understanding of pediatric cancer and preclinical treatment models, and strengthen multifaceted components needed for a successful research career in cancer bioinformatics. The primary mentor, Dr. Peter Houghton, is a renowned leader in pediatric cancer research and preclinical drug testing programs. The candidate also has assembled an outstanding mentor team: Dr. Yidong Chen (co-mentor), a cancer genomics expert and pioneer in bioinformatics analysis of high-throughput technologies; Dr. Jinghui Zhang (collaborator), a computational biologist and leader in integrative genomics studies of major pediatric cancer genome consortiums; Dr. Yufei Huang (collaborator), an expert in state-of-the-art deep learning methods; and two highly knowledgeable consultants with relevant expertise. With this team’s guidance and structured training activities in an ideal training environment, the candidate will strengthen his skills in grant writing and lab management, teaching and mentoring, and broad connections. Overall, the K99/R00 award will be an indispensable support for a timely transition of the candidate to a successful career as a multifaceted, cross-disciplinary investigator in cancer bioinformatics.
摘要/摘要 小儿癌症是儿童死亡的第二大原因,其新疗法的开发是 由于缺乏全面的药物基因组学资源,与现有的成熟资源不同,这具有挑战性 然而,深度学习方法的突破使得复杂的药物基因组学的学习成为可能。 具有前所未有的表现的模式,具有独特的跨学科背景,这个候选人。 作为博士后研究员,提出的 K99/R00 已经 (i) 开发并发表了多项深度学习 使用高准确度预测成体癌细胞的药物敏感性和遗传依赖性的模型 吞吐量基因组学概况,以及(ii)证明了通过转移模型来预测肿瘤的可行性 候选人将把这项研究扩展到儿科癌症并测试中心。 假设深度学习提取基因组学特征来预测儿童癌细胞的反应 拟议的研究将开发新的深度学习模型来预测。 (目标 1) 目前未筛选的儿科癌细胞系的药物敏感性和/或遗传依赖性 从成人细胞筛选中学习,以及(目标 2)通过从成人和/或儿科细胞学习来学习儿科肿瘤。 预测结果将通过体外实验和从患者来源的异种移植物收集的数据进行验证。 这项研究是首次尝试采用现代计算方法来推进 小儿癌症的药物基因组学研究,通过生物检测进行起来既困难又昂贵。 研究结果将揭示儿科恶性肿瘤的最佳药物和新的治疗靶点,从而促进 最佳且高效的临床前测试设计 该候选人在生物信息学方面拥有出色的记录。 K99 培训计划的重点是深入了解成人癌症基因组学。 儿科癌症和临床前治疗模型,并加强治疗所需的多方面组成部分 其主要导师 Peter Houghton 博士是一位在癌症生物信息学方面取得成功的研究生涯。 该候选人还组建了一个儿科癌症研究和临床前药物测试项目的领导者。 优秀导师团队:癌症基因组学专家、生物信息学先驱陈一东博士(联合导师) 高通量技术分析;张景辉博士(合作者),计算生物学家和领导者 主要儿童癌症基因组联盟的综合基因组学研究;Yufei Huang 博士(合作者), 一位最先进的深度学习方法专家;以及两位知识渊博的相关顾问; 凭借该团队的指导和在理想的培训环境中进行的结构化培训活动, 候选人将加强他在资助写作和实验室管理、教学和指导以及广泛的方面的技能 总体而言,K99/R00奖项将是候选人及时过渡不可或缺的支持。 作为癌症生物信息学领域的多方面、跨学科研究者,取得成功的职业生涯。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Yu-Chiao Chiu其他文献

Yu-Chiao Chiu的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Yu-Chiao Chiu', 18)}}的其他基金

In silico screening for immune surveillance adaptation in cancer using Common Fund data resources
使用共同基金数据资源对癌症免疫监测适应进行计算机筛选
  • 批准号:
    10773268
  • 财政年份:
    2023
  • 资助金额:
    $ 24.9万
  • 项目类别:
Enhancing AI-readiness of multi-omics data for cancer pharmacogenomics
增强癌症药物基因组学多组学数据的人工智能就绪性
  • 批准号:
    10840074
  • 财政年份:
    2020
  • 资助金额:
    $ 24.9万
  • 项目类别:
Deep learning of drug sensitivity and genetic dependency of pediatric cancer cells
儿科癌细胞药物敏感性和遗传依赖性的深度学习
  • 批准号:
    10112859
  • 财政年份:
    2020
  • 资助金额:
    $ 24.9万
  • 项目类别:
Deep learning of drug sensitivity and genetic dependency of pediatric cancer cells
儿科癌细胞药物敏感性和遗传依赖性的深度学习
  • 批准号:
    10657820
  • 财政年份:
    2020
  • 资助金额:
    $ 24.9万
  • 项目类别:

相似国自然基金

单核细胞产生S100A8/A9放大中性粒细胞炎症反应调控成人Still病发病及病情演变的机制研究
  • 批准号:
    82373465
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
成人型弥漫性胶质瘤患者语言功能可塑性研究
  • 批准号:
    82303926
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
MRI融合多组学特征量化高级别成人型弥漫性脑胶质瘤免疫微环境并预测术后复发风险的研究
  • 批准号:
    82302160
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
SERPINF1/SRSF6/B7-H3信号通路在成人B-ALL免疫逃逸中的作用及机制研究
  • 批准号:
    82300208
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于动态信息的深度学习辅助设计成人脊柱畸形手术方案的研究
  • 批准号:
    82372499
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目

相似海外基金

Multidomain Peptide Hydrogels as a Therapeutic Delivery Platform for Cancer Treatment
多域肽水凝胶作为癌症治疗的治疗传递平台
  • 批准号:
    10743144
  • 财政年份:
    2023
  • 资助金额:
    $ 24.9万
  • 项目类别:
Exploring the Use of a Web-Based Program for Older Adults Receiving Oral Anticancer Agents to Improve Communication and Self-Management
探索使用基于网络的程序为接受口服抗癌药物的老年人改善沟通和自我管理
  • 批准号:
    10579689
  • 财政年份:
    2023
  • 资助金额:
    $ 24.9万
  • 项目类别:
Baboon model of chemotherapy-related cognitive impairment and accelerated aging
化疗相关认知障碍和加速衰老的狒狒模型
  • 批准号:
    10505742
  • 财政年份:
    2022
  • 资助金额:
    $ 24.9万
  • 项目类别:
Baboon model of chemotherapy-related cognitive impairment and accelerated aging
化疗相关认知障碍和加速衰老的狒狒模型
  • 批准号:
    10677750
  • 财政年份:
    2022
  • 资助金额:
    $ 24.9万
  • 项目类别:
A novel algorithm to compute adherence from electronic adherence monitoring devices
一种计算电子依从性监测设备依从性的新算法
  • 批准号:
    10698066
  • 财政年份:
    2022
  • 资助金额:
    $ 24.9万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了