In silico screening for immune surveillance adaptation in cancer using Common Fund data resources
使用共同基金数据资源对癌症免疫监测适应进行计算机筛选
基本信息
- 批准号:10773268
- 负责人:
- 金额:$ 31.8万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-20 至 2024-09-19
- 项目状态:已结题
- 来源:
- 关键词:AdultAffectAntineoplastic AgentsArtificial IntelligenceAwardBioinformaticsBiologicalCD8-Positive T-LymphocytesCancer cell lineCell DeathCell LineCell secretionCellsChildComputer AnalysisComputer ModelsDataData SetDetectionDevelopmentDrynessFollow-Up StudiesFundingGeneticGenomicsGoalsImmuneImmune EvasionImmune TargetingImmune responseImmune systemImmunologic SurveillanceImmunologicsImmunologyImmunology procedureImmunomodulatorsImmunotherapyIn VitroIntelligenceKnowledgeLaboratoriesLibrariesMacrophageMalignant NeoplasmsMediatingModelingMolecularMolecular ProfilingNetwork-basedPatternPediatric NeoplasmPerformancePharmaceutical PreparationsPharmacogenomicsPilot ProjectsProductionProductivityPrognosisPublishingResearchResourcesSignal InductionSignal TransductionTestingThe Cancer Genome AtlasTherapeuticTrainingTumor-infiltrating immune cellsUnited States National Institutes of HealthValidationWorkcancer carecancer cellcancer genomicscancer immunotherapycancer typecarcinogenesiscell typechemokinecomputer frameworkcomputerized toolscytokinedata integrationdata resourcedeep learningdeep learning modeldesigneffective therapyexperiencefollow-upgenetic signatureimmune functionimmune modulating agentsimmunoregulationimprovedin silicoin vitro Assayin vitro Modelinnovationinsightinterestlarge datasetslarge-scale databasemultimodal datamultimodalityneoplastic cellnovelpharmacologicpre-clinicalprogramsresponsescreeningtargeted agenttumor immunologytumor microenvironment
项目摘要
Summary/Abstract
Advances in immunotherapy have lately revolutionized cancer care. A key strategy of cancer immunotherapy is
to target “non-cell-autonomous” mechanisms of immune surveillance adaptation, achieved via regulating the
secretions of immune modulators from cancer cells. Yet, an in silico systematic screen for these targets and
immunomodulating agents (potentially therapeutic drugs) remains untested due to a lack of computational tools
to analyze relevant large-scale database resources. The study is proposed in response to RFA-RM-23-003 to
meaningfully integrate multiple NIH Common Fund and other NIH-funded datasets to inform the molecular basis
of immune surveillance adaptation and screen for potential immunomodulating agents. Our central hypothesis
is that cancer genomic features captured by deep learning predict cancer cells’ non-cell autonomous signals
induced by a compound treatment to modulate immune cells in the tumor microenvironment. We propose to test
the hypothesis by developing an innovative and feasible computational framework that is built upon our published
deep learning models. Specifically, in Aim 1.1 we propose to identify prognosis-related immune cell types and
associated immunologic gene signatures among adult (The Cancer Genome Atlas [TCGA]) and pediatric tumors
(Gabriella Miller Kids First [Kids First] and Therapeutically Applicable Research To Generate Effective
Treatments [TARGET]). We will then build a deep learning model to predict the perturbation of the identified
immunologic gene signatures induced by a compound in a cancer cell line using the Library of Integrated
Network-based Cellular Signatures (LINCS) data. In Aim 1.2, we will experimentally validate key findings using
our in-house in vitro models. We have formed a cross-disciplinary team with strong complementary expertise to
efficiently achieve the proposed goals: dry lab of Dr. Yu-Chiao Chiu (MPI) for cancer bioinformatics, multi-modal
data integration, and artificial intelligence; and wet lab of Dr. Yi-Nan Gong (MPI) for cancer immunology,
immunotherapy, and tumor cell death mechanisms. Successful completion of the pilot study will produce high-
impact preliminary results: i) the first deep learning framework that systematically incorporates multi-modal
genomic and pharmacogenomic data to screen for immunomodulating agents, ii) a deeper understanding of the
molecular basis of immune surveillance adaptation than was previously possible, and more importantly iii) a set
of promising targets preliminarily validated in vitro. These preliminary data will lead to a follow-up study to explore
functional and preclinical aspects of our results. We also expect the proposed study to provide a computational
framework that enhances the utilization and integration of NIH Common Fund data and other publicly available
large datasets.
摘要/摘要
免疫疗法的进步最近彻底改变了癌症治疗。癌症免疫疗法的一个关键策略是。
针对免疫监视适应的“非细胞自主”机制,通过调节
然而,对这些目标的计算机系统筛选和免疫调节剂的分泌。
由于缺乏计算工具,免疫调节剂(潜在的治疗药物)仍未经过测试
分析相关大型数据库资源。本研究是响应 RFA-RM-23-003 提出的。
有意义地整合多个 NIH 共同基金和其他 NIH 资助的数据集,为分子基础提供信息
免疫监视适应和潜在免疫调节剂的筛选我们的中心假设。
深度学习捕获的癌症基因组特征可以预测癌细胞的非细胞自主信号
我们建议进行测试,以调节肿瘤微环境中的免疫细胞。
该假设是通过创新且可行的计算框架开发的,该框架建立在我们已发表的
具体来说,在目标 1.1 中,我们建议识别与预后相关的免疫细胞类型和
成人(癌症基因组图谱 [TCGA])和儿童肿瘤中相关的免疫基因特征
(加布里埃拉·米勒“孩子优先”[Kids First] 和治疗性应用研究,以产生有效的
然后,我们将构建一个深度学习模型来预测已识别的扰动。
使用集成库分析癌细胞系中化合物诱导的免疫基因特征
基于网络的蜂窝签名 (LINCS) 数据在目标 1.2 中,我们将使用实验验证关键发现。
我们的内部体外模型已组建了一支具有强大互补专业知识的跨学科团队。
有效实现拟议目标:Yu-Chiao Chiu 博士 (MPI) 癌症生物信息学、多模态干实验室
数据集成和人工智能;以及龚一南博士 (MPI) 的癌症免疫学湿实验室,
成功完成试点研究将产生高水平的免疫治疗和肿瘤细胞死亡机制。
影响初步结果:i)第一个系统地整合多模态的深度学习框架
基因组和药物基因组数据来筛选免疫调节剂,ii) 更深入地了解
免疫监视适应的分子基础比以前可能的,更重要的是 iii) 一组
这些初步数据将导致后续研究的探索。
我们还期望拟议的研究能够提供计算结果。
加强 NIH 共同基金数据和其他公开数据的利用和整合的框架
大型数据集。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yu-Chiao Chiu其他文献
Yu-Chiao Chiu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Yu-Chiao Chiu', 18)}}的其他基金
Enhancing AI-readiness of multi-omics data for cancer pharmacogenomics
增强癌症药物基因组学多组学数据的人工智能就绪性
- 批准号:
10840074 - 财政年份:2020
- 资助金额:
$ 31.8万 - 项目类别:
Deep learning of drug sensitivity and genetic dependency of pediatric cancer cells
儿科癌细胞药物敏感性和遗传依赖性的深度学习
- 批准号:
10112859 - 财政年份:2020
- 资助金额:
$ 31.8万 - 项目类别:
Deep learning of drug sensitivity and genetic dependency of pediatric cancer cells
儿科癌细胞药物敏感性和遗传依赖性的深度学习
- 批准号:
10620367 - 财政年份:2020
- 资助金额:
$ 31.8万 - 项目类别:
Deep learning of drug sensitivity and genetic dependency of pediatric cancer cells
儿科癌细胞药物敏感性和遗传依赖性的深度学习
- 批准号:
10657820 - 财政年份:2020
- 资助金额:
$ 31.8万 - 项目类别:
相似国自然基金
干旱内陆河高含沙河床对季节性河流入渗的影响机制
- 批准号:52379031
- 批准年份:2023
- 资助金额:51 万元
- 项目类别:面上项目
沿纬度梯度冠层结构多样性变化对森林生产力的影响
- 批准号:32371610
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
开放与二元结构下的中国工业化:对增长与分配的影响机制研究
- 批准号:72373005
- 批准年份:2023
- 资助金额:40 万元
- 项目类别:面上项目
基于MF和HPLC-ICP-MS监测蛋白冠形成与转化研究稀土掺杂上转换纳米颗粒对凝血平衡的影响机制
- 批准号:82360655
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
高寒草灌植被冠层与根系结构对三维土壤水分动态的影响研究
- 批准号:42301019
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Targeting neuronal transport to ameliorate vincristine neurotoxicity
靶向神经元运输以改善长春新碱神经毒性
- 批准号:
10736789 - 财政年份:2023
- 资助金额:
$ 31.8万 - 项目类别:
Neural Circuits, Kinetics and Energetics HTS of Human iPSC-Neurons, -Microglia, and -Astrocytes: AI-Enabled Platform for Target ID, and Drug Discovery and Toxicity (e.g., Cancer Chemo & HIV ARTs)
人类 iPSC 神经元、小胶质细胞和星形胶质细胞的神经回路、动力学和能量 HTS:用于目标 ID、药物发现和毒性(例如癌症化疗)的 AI 平台
- 批准号:
10707866 - 财政年份:2023
- 资助金额:
$ 31.8万 - 项目类别:
Exploring the Use of a Web-Based Program for Older Adults Receiving Oral Anticancer Agents to Improve Communication and Self-Management
探索使用基于网络的程序为接受口服抗癌药物的老年人改善沟通和自我管理
- 批准号:
10579689 - 财政年份:2023
- 资助金额:
$ 31.8万 - 项目类别:
Regulation of Osteocyte Survival by Fibroblast Growth Factor Signaling Pathways
成纤维细胞生长因子信号通路对骨细胞存活的调节
- 批准号:
10391803 - 财政年份:2022
- 资助金额:
$ 31.8万 - 项目类别:
The role of Myeloid cells in pediatric-high grade gliomas
骨髓细胞在儿童高级别胶质瘤中的作用
- 批准号:
10391024 - 财政年份:2022
- 资助金额:
$ 31.8万 - 项目类别: