Robust Methods for Polygenic Analysis to Inform Disease Etiology and Enhance Risk Prediction
多基因分析的稳健方法可告知疾病病因并增强风险预测
基本信息
- 批准号:10579942
- 负责人:
- 金额:$ 57.53万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-05-01 至 2025-02-28
- 项目状态:未结题
- 来源:
- 关键词:AccelerationAlgorithmsArchitectureAreaBiologicalBody mass indexBreast Cancer Risk FactorCase/Control StudiesCharacteristicsComplexCoronary heart diseaseDataData SetDependenceDetectionDevelopmentDiseaseEnvironmentEnvironmental ExposureEnvironmental Risk FactorEpidemiologyEtiologyFoundationsGenesGeneticGenetic MarkersGenetic ModelsGenetic Predisposition to DiseaseGenetic RiskGenomeGenomicsGenotypeHealthHeritabilityHumanIndividualInvestigationJointsLinear RegressionsMendelian randomizationMethodsModelingModernizationNatureNon-Insulin-Dependent Diabetes MellitusNormalcyOutcomePerformancePhenotypePopulationPopulation GeneticsReproductive HistoryResidual stateRisk FactorsSeriesSignal TransductionSourceVariantbiobankbiomarker panelcase controldisorder riskepidemiology studyflexibilityfunctional genomicsgene environment interactiongenetic associationgenetic epidemiologygenetic variantgenome wide association studygenome-widegenomic dataimprovedinnovationinsightinterestknowledge translationlifestyle factorsmalignant breast neoplasmnovelpolygenic risk scorepopulation stratificationrisk predictionrisk prediction modelsimulationstatisticstooltraitwhole genome
项目摘要
Abstract
Modern genome-wide association studies have unequivocally demonstrated that complex traits are extremely
polygenic, with each individual trait potentially involving thousands to tens of thousands of genetic variants. In
this project, we will develop a series of novel methods to harness the power of polygenic signals in large
GWAS to inform disease etiology and improve models for risk prediction. In (Aim 1), we will develop methods
for conducting enrichment analysis of association signals in GWAS in relationship to various population genetic
and functional genomic characteristics of the genome. We propose to model effect-size distributions
associated with whole genome panel of markers using flexible normal-mixture models, where class
memberships of the markers are modelled probabilistically in terms of various genomic “covariates”. Inferred
models and underlying parameters will be further utilized in an empirical-Bayes framework to derive polygenic
risk-scores (PRS) for genetic risk prediction. In (Aim 2), we will develop novel methods for Mendelian
randomization analysis, a form of instrumental variable analysis, for the investigation of causal relationships
between risk-factors and health outcomes. We will utilize flexible models for bivariate effect-size distributions
across pairs of traits, allowing for genetic correlation to arise from both causal and non-causal relationships.
We propose a solution to the complex problem of estimation of causal effects under the proposed framework
using an innovative method for “spike detection” in the distribution of certain types of residuals. In (Aim 3), we
will develop novel methods to enhance the power of gene-environment interaction analysis using PRS in case-
control studies. We will develop retrospective methods that can take advantage of various natural assumptions
about the distribution of PRS, including normality and its independence from environmental exposures,
possibly conditional on other factors, in the underlying population. We will apply the proposed methods to
conduct large scale analysis of existing GWAS datasets for a wide variety of traits and expect to make novel
scientific observations regarding mechanisms of genetic susceptibility, causal basis for epidemiologic
associations, nature of gene-environment interactions and utility of genetic risk prediction.
抽象的
现代基因组的关联研究明确证明了复杂的特征极为
多基因,每个单独的性状都可能涉及数千至数万个遗传变异。在
这个项目,我们将开发一系列新颖的方法来利用大型信号的力量
GWA为疾病的病因和改善风险预测的模型。在(AIM 1)中,我们将开发方法
用于对GWAS中的关联信号进行丰富分析与各种人群的关系
基因组的功能基因组特征。我们建议建模效应尺寸分布
使用柔性正常混合模型与整个标记的整个基因组小组相关联,其中类别
标记的成员资格可能是根据各种基因组“协变量”来建模的。推断
模型和基础参数将在经验bayes框架中进一步使用,以得出多基因
遗传风险预测的风险评分(PR)。在(AIM 2)中,我们将为Mendelian开发新颖的方法
随机化分析是一种仪器变量分析的一种形式,用于研究因果关系
在风险因素和健康结果之间。我们将利用灵活的模型进行双变量效应大小分布
在各对性状上,允许因果关系和非因果关系引起遗传相关性。
我们提出了解决拟议框架下因果效应估计的复杂问题的解决方案
在某些类型的残留物分布中,使用一种创新的方法来“尖峰检测”。在(AIM 3)中,我们
将开发新的方法来使用PRS在案例中增强基因环境相互作用分析的能力
对照研究。我们将开发可利用各种自然假设的回顾性方法
关于PRS的分布,包括正态性及其与环境暴露的独立性,
可能是基于潜在人群的其他因素的条件。我们将应用提出的方法
对现有的GWAS数据集进行大规模分析,以实现各种特征,并希望使新颖
关于遗传易感性机制的科学观察,流行病学的因果基础
关联,基因环境相互作用的性质以及遗传风险预测的实用性。
项目成果
期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A mixed-model approach for powerful testing of genetic associations with cancer risk incorporating tumor characteristics.
一种混合模型方法,可结合肿瘤特征对与癌症风险的遗传关联进行强有力的测试。
- DOI:10.1093/biostatistics/kxz065
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Zhang,Haoyu;Zhao,Ni;Ahearn,ThomasU;Wheeler,William;García-Closas,Montserrat;Chatterjee,Nilanjan
- 通讯作者:Chatterjee,Nilanjan
Effect of non-normality and low count variants on cross-phenotype association tests in GWAS.
非正态性和低计数变异对 GWAS 交叉表型关联测试的影响。
- DOI:10.1038/s41431-019-0514-2
- 发表时间:2020
- 期刊:
- 影响因子:0
- 作者:Ray,Debashree;Chatterjee,Nilanjan
- 通讯作者:Chatterjee,Nilanjan
Genome-wide association studies of 27 accelerometry-derived physical activity measurements identified novel loci and genetic mechanisms.
- DOI:10.1002/gepi.22441
- 发表时间:2022-03
- 期刊:
- 影响因子:2.1
- 作者:Qi G;Dutta D;Leroux A;Ray D;Muschelli J;Crainiceanu C;Chatterjee N
- 通讯作者:Chatterjee N
A penalized regression framework for building polygenic risk models based on summary statistics from genome-wide association studies and incorporating external information.
- DOI:10.1080/01621459.2020.1764849
- 发表时间:2021
- 期刊:
- 影响因子:3.7
- 作者:Chen TH;Chatterjee N;Landi MT;Shi J
- 通讯作者:Shi J
Potential utility of risk stratification for multicancer screening with liquid biopsy tests.
- DOI:10.1038/s41698-023-00377-w
- 发表时间:2023-04-22
- 期刊:
- 影响因子:7.9
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Nilanjan Chatterjee其他文献
Nilanjan Chatterjee的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Nilanjan Chatterjee', 18)}}的其他基金
Statistical Methods for Data Integration and Applications to Genome-wide Association Studies
数据集成的统计方法及其在全基因组关联研究中的应用
- 批准号:
10889298 - 财政年份:2023
- 资助金额:
$ 57.53万 - 项目类别:
Multifactoral breast cancer risk prediction accounting for ethnic and tumor diversity
考虑种族和肿瘤多样性的多因素乳腺癌风险预测
- 批准号:
10609504 - 财政年份:2020
- 资助金额:
$ 57.53万 - 项目类别:
Multifactoral breast cancer risk prediction accounting for ethnic and tumor diversity
考虑种族和肿瘤多样性的多因素乳腺癌风险预测
- 批准号:
10416066 - 财政年份:2020
- 资助金额:
$ 57.53万 - 项目类别:
Multifactoral breast cancer risk prediction accounting for ethnic and tumor diversity
考虑种族和肿瘤多样性的多因素乳腺癌风险预测
- 批准号:
10263893 - 财政年份:2020
- 资助金额:
$ 57.53万 - 项目类别:
Robust Methods for Polygenic Analysis to Inform Disease Etiology and Enhance Risk Prediction
多基因分析的稳健方法可告知疾病病因并增强风险预测
- 批准号:
9920753 - 财政年份:2019
- 资助金额:
$ 57.53万 - 项目类别:
Robust Methods for Polygenic Analysis to Inform Disease Etiology and Enhance Risk Prediction
多基因分析的稳健方法可告知疾病病因并增强风险预测
- 批准号:
10359748 - 财政年份:2019
- 资助金额:
$ 57.53万 - 项目类别:
Robust Methods for Polygenic Analysis to Inform Disease Etiology and Enhance Risk Prediction
多基因分析的稳健方法可告知疾病病因并增强风险预测
- 批准号:
10112944 - 财政年份:2019
- 资助金额:
$ 57.53万 - 项目类别:
相似国自然基金
分布式非凸非光滑优化问题的凸松弛及高低阶加速算法研究
- 批准号:12371308
- 批准年份:2023
- 资助金额:43.5 万元
- 项目类别:面上项目
资源受限下集成学习算法设计与硬件实现研究
- 批准号:62372198
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
基于物理信息神经网络的电磁场快速算法研究
- 批准号:52377005
- 批准年份:2023
- 资助金额:52 万元
- 项目类别:面上项目
考虑桩-土-水耦合效应的饱和砂土变形与流动问题的SPH模型与高效算法研究
- 批准号:12302257
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
面向高维不平衡数据的分类集成算法研究
- 批准号:62306119
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
A computational model for prediction of morphology, patterning, and strength in bone regeneration
用于预测骨再生形态、图案和强度的计算模型
- 批准号:
10727940 - 财政年份:2023
- 资助金额:
$ 57.53万 - 项目类别:
GPU-based SPECT Reconstruction Using Reverse Monte Carlo Simulations
使用反向蒙特卡罗模拟进行基于 GPU 的 SPECT 重建
- 批准号:
10740079 - 财政年份:2023
- 资助金额:
$ 57.53万 - 项目类别:
Visual Analytics for Exploration and Hypothesis Generation Using Highly MultiplexedSpatial Data of Tissues and Tumors
使用组织和肿瘤的高度多重空间数据进行探索和假设生成的可视化分析
- 批准号:
10743329 - 财政年份:2023
- 资助金额:
$ 57.53万 - 项目类别:
Proteasomal recruiters of PAX3-FOXO1 Designed via Sequence-Based Generative Models
通过基于序列的生成模型设计的 PAX3-FOXO1 蛋白酶体招募剂
- 批准号:
10826068 - 财政年份:2023
- 资助金额:
$ 57.53万 - 项目类别:
Modeling and Analysis of the Spatio-Temporal Dynamics of the Mitochondrial Network
线粒体网络时空动力学的建模与分析
- 批准号:
10568586 - 财政年份:2023
- 资助金额:
$ 57.53万 - 项目类别: