Addressing COVID-19 Testing Disparities in Vulnerable Populations Using a Community JITAI (Just in Time Adaptive Intervention) Approach: RADxUP Phase III
使用社区 JITAI(及时自适应干预)方法解决弱势群体中的 COVID-19 检测差异:RADxUP 第三阶段
基本信息
- 批准号:10617103
- 负责人:
- 金额:$ 109.69万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-12-01 至 2024-11-30
- 项目状态:已结题
- 来源:
- 关键词:2019-nCoVAddressAdoptedAttitudeBehaviorBlack PopulationsCOVID-19COVID-19 disparityCOVID-19 morbidityCOVID-19 severityCOVID-19 surveillanceCOVID-19 susceptibilityCOVID-19 testingCOVID-19 vaccinationCensusesClinical SciencesCollaborationsCommunitiesCommunity Health AidesComparison armCountryCountyDataDevelopmentDiseaseDisparityEconomicsEducation and OutreachEffectivenessElementsFoundationsHispanic PopulationsHospitalizationIndividualInequityInfectionInfluentialsInformation NetworksInfrastructureInterventionLightMachine LearningMedicalMethodsMinority GroupsMisinformationMonitorNot Hispanic or LatinoPathway AnalysisPatternPersonsPhasePopulationRADx Underserved PopulationsResourcesRural MinorityScienceServicesSevere Acute Respiratory SyndromeSocial NetworkSourceSouth TexasTechniquesTestingTexasTimeTranslational ResearchTrustUnderserved PopulationUse EffectivenessVaccinationVaccinesVariantVulnerable PopulationsWaxesWorkadaptive interventionanalytical methodantigen testbehavior testclinical centercommunity engagementcommunity partnershipcomorbiditycomparison groupcontextual factorsdesigndisparities in morbidityexperiencehealth disparityimprovedinnovationinterestmortalitymortality disparitynovelnovel strategiespandemic diseasephase 3 studypopulation basedracial diversityrandomized trialrapid testingrisk mitigationrural settingsocialsocial computingsocial health determinantssocial interventionssocial mediasurveillance datatesting accesstherapy designtrendwastewater surveillance
项目摘要
Vulnerable populations including those with medical comorbidities, people living in rural
settings and minorities experience significant COVID-19 disparities. Additionally, Hispanics and
Blacks are significantly more likely to be infected and hospitalized when compared to White,
Non-Hispanics. The proposed study builds on RADx-UP Phases I & Phase II work reaching
these populations in three racially diverse regions: Houston/Harris County, South Texas, and
Northeast Texas to increase SARS-CoV-2 testing, vaccination, and risk mitigation behaviors to
reduce COVID-19 morbidity, mortality, and inequities among underserved populations in Texas.
The proposed study leverages the partnerships and resources of the Center for Clinical and
Translational Science (CCTS) including long-standing community partnerships. Phase III will
include mixed methods and community-engaged approaches to inform adaptation of our
existing (and the development of new) multilevel intervention messages, materials and
strategies with a focus on increasing rapid SARS-CoV-2 testing. It will also include a broader
focus on addressing the social determinants of health (SDOH) and an emphasis on combating
misinformation. Innovative elements of the proposed study include testing a novel approach to
optimize community engagement that uses real-time data to inform intervention adaptation and
implementation, using advances in social computing and machine learning to better understand
patterns of misinformation in social media, and using multilevel social network analysis
techniques to increase intervention agility, intensity, and reach. This project has three aims:
Aim 1) Expand existing sources of population-based COVID-19 surveillance data to quantify
infection, testing and vaccination trends in three Texas regions, and use innovative methods to
inform and evaluate the proposed interventions; Aim 2) Adapt, implement and evaluate the
multilevel community just-in-time adaptive intervention (MC-JITAI) developed in Phase II to
increase SARS-CoV-2 testing, mitigation behaviors, and COVID-19 vaccination, among
underserved and vulnerable populations in three regions of Texas; and Aim 3) Determine the
feasibility and effectiveness of leveraging multilevel social networks to improve SARS-CoV-2
testing and COVID-19 vaccination, in three regions of Texas.
弱势群体包括患有医疗合并症的人群,居住在农村的人
环境和少数民族经历了显着的共同差距。此外,西班牙裔和
与白人相比,黑人更有可能感染和住院
非西班牙裔。拟议的研究建立在RADX-UP阶段I和II阶段工作的基础上
这些人口在三个种族不同的地区:休斯顿/哈里斯县,南德克萨斯州和
德克萨斯州东北部以增加SARS-COV-2测试,疫苗接种和降低风险行为
德克萨斯州服务不足的人口中,降低了19日的发病率,死亡率和不平等。
拟议的研究利用了临床中心的合作和资源
转化科学(CCT),包括长期的社区伙伴关系。第三阶段会
包括混合方法和社区参与方法,以告知我们的适应我们
现有(以及新的)多层次干预消息,材料和
策略着重于增加快速SARS-COV-2测试。它也将包括更广泛的
专注于解决健康的社会决定因素(SDOH),并强调作战
误传。拟议研究的创新元素包括测试一种新方法
优化使用实时数据为干预适应和
实施,利用社交计算和机器学习方面的进步来更好地理解
社交媒体中错误信息的模式,并使用多级社交网络分析
提高干预敏捷性,强度和触及的技术。该项目有三个目标:
目标1)扩展现有的基于人群的Covid-19-199监视数据来量化
德克萨斯州三个地区的感染,测试和疫苗接种趋势,并使用创新方法
告知和评估拟议的干预措施;目标2)适应,实施和评估
在第二阶段开发的多级社区即时自适应干预(MC-JITAI)
增加SARS-COV-2测试,缓解行为和COVID-19
德克萨斯州三个地区的服务不足和脆弱的人口;目标3)确定
利用多级社交网络改善SARS-COV-2的可行性和有效性
在德克萨斯州的三个地区进行测试和共同疫苗接种。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Cici Bauer其他文献
Cici Bauer的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Cici Bauer', 18)}}的其他基金
Addressing COVID-19 Testing Disparities in Vulnerable Populations Using a Community JITAI (Just in Time Adaptive Intervention) Approach: RADxUP Phase III
使用社区 JITAI(及时自适应干预)方法解决弱势群体中的 COVID-19 检测差异:RADxUP 第三阶段
- 批准号:
10847026 - 财政年份:2022
- 资助金额:
$ 109.69万 - 项目类别:
Predict to Prevent: Dynamic Spatiotemporal Analyses of Opioid Overdose to Guide Pre-Emptive Public Health Responses
预测预防:阿片类药物过量的动态时空分析以指导预防性公共卫生应对
- 批准号:
10618998 - 财政年份:2022
- 资助金额:
$ 109.69万 - 项目类别:
Predict to Prevent: Dynamic Spatiotemporal Analyses of Opioid Overdose to Guide Pre-Emptive Public Health Responses
预测预防:阿片类药物过量的动态时空分析以指导预防性公共卫生应对
- 批准号:
10444263 - 财政年份:2022
- 资助金额:
$ 109.69万 - 项目类别:
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
相似海外基金
DATA MANAGEMENT FOR CANCER DIAGNOSIS PROGRAM ACTIVITIES
癌症诊断计划活动的数据管理
- 批准号:
10849595 - 财政年份:2023
- 资助金额:
$ 109.69万 - 项目类别:
Using wastewater surveillance data to study SARS-CoV-2 dynamics and predict COVID-19 outcomes
利用废水监测数据研究 SARS-CoV-2 动态并预测 COVID-19 结果
- 批准号:
10645617 - 财政年份:2023
- 资助金额:
$ 109.69万 - 项目类别:
Optimizing the Generation of Monoclonal Antibodies for Prevention and Treatment of HSV Disease
优化用于预防和治疗 HSV 疾病的单克隆抗体的生成
- 批准号:
10717320 - 财政年份:2023
- 资助金额:
$ 109.69万 - 项目类别:
Immune-epithelial progenitor interactions drive age-associated dysplastic lung repair post viral pneumonia
免疫上皮祖细胞相互作用驱动病毒性肺炎后与年龄相关的发育不良肺修复
- 批准号:
10751699 - 财政年份:2023
- 资助金额:
$ 109.69万 - 项目类别: