Using wastewater surveillance data to study SARS-CoV-2 dynamics and predict COVID-19 outcomes
利用废水监测数据研究 SARS-CoV-2 动态并预测 COVID-19 结果
基本信息
- 批准号:10645617
- 负责人:
- 金额:$ 24.68万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-01-10 至 2024-12-31
- 项目状态:已结题
- 来源:
- 关键词:2019-nCoVAccountingAddressAdoptedAmericanAwarenessBackBiological ModelsCOVID-19COVID-19 detectionCOVID-19 monitoringCOVID-19 pandemicCOVID-19 surveillanceCOVID-19 testingCase StudyCessation of lifeCitiesCommunitiesCountyDataData SetDetectionDevelopmentDisease SurveillanceEmergency department visitEpidemiologyEvolutionFutureGeneral PopulationGoalsHomeHospitalizationImmunityIndividualInfectionInterventionLocationMapsMeasuresModelingNeighborhoodsNew York CityOutcomePlantsPopulationPredispositionPrevalencePublic HealthRNAReadinessReportingResearch PersonnelSARS-CoV-2 infectionSARS-CoV-2 transmissionSecondary ImmunizationSystemTestingTimeUncertaintyUnited StatesVaccinationVaccinesVariantVirus SheddingWorkbehavior testcommunity transmissiondiverse dataflexibilityhome testimprovedinnovationmodel buildingmodel designnovelpandemic diseasepilot testpredictive modelingprogramsresearch clinical testingresponsesurveillance datatooltransmission processtrenduser-friendlywastewater surveillance
项目摘要
Using wastewater surveillance data to study SARS-CoV-2 dynamics and predict COVID-19 outcomes
Due to the continued evolution of SARS-CoV-2 and emergence of new variants, COVID-19 will likely continue
to impose a substantial public health burden in the United States in the future. Yet, the rollback of clinical
testing programs and increased use of at-home tests nationwide will exacerbate under-detection of SARS-
CoV-2 infections, hindering timely public health situation awareness and intervention. Thus, development of
modeling tools to tackle this surveillance challenge is urgently needed and the goal of this application. We
propose to use wastewater surveillance data to study SARS-CoV-2 dynamics and predict COVID-19 cases,
hospitalizations, and deaths 1 to 6 weeks in the future. The proposed core model-inference/prediction system
will combine mechanistic models depicting SARS-CoV-2 transmission in the general population and the
ensemble adjustment Kalman filter (EAKF) to incorporate SARS-CoV-2 wastewater surveillance data for
inference. We will pilot-test this system using both rich data (wastewater surveillance and multiple COVID-19
outcomes) and detailed model estimates (e.g., infection prevalence) available for New York City (Aim 1). We
will then expand and test the system on 50+ counties across the United States (Aim 2). Using these models,
we will further create an easy-to-use modeling tool for public health officials (Aim 3). The proposed work is
Innovative and Robust in that 1) SARS-CoV-2 concentration in wastewater represents a composite measure
of SARS-CoV-2 presence in the population, regardless of individual testing behavior; 2) We will build prediction
systems that go beyond the situation awareness afforded by wastewater surveillance alone. We will design the
model-prediction system to be 3) flexible using modularized model components to accommodate diverse data
availability across locations and 4) robust by leveraging detailed data and estimates for New York City and 50+
counties to test and improve various model forms and quantify the uncertainty and accuracy of each model.
Further, the Investigator Team has synthesized expertise in wastewater surveillance and modeling, and will
work closely with public health officials to tailor the modeling system to public health need. With SARS-CoV-2
wastewater surveillance widely adopted in many communities (currently representing 100+ million Americans),
the model-prediction system developed here can support more proactive COVID-19 planning in the future.
使用废水监视数据研究SARS-COV-2动力学并预测COVID-19的结果
由于SARS-COV-2的持续发展和新变体的出现,Covid-19可能会继续
将来在美国施加重大的公共卫生负担。但是,临床的回滚
在全国范围内进行测试计划和增加的家庭测试的使用将使SARS-
COV-2感染,阻碍及时的公共卫生状况意识和干预。因此,发展
迫切需要建模以应对这一监视挑战的工具以及该应用程序的目标。我们
建议使用废水监视数据来研究SARS-COV-2动力学并预测COVID-19案例,
未来的住院和死亡1至6周。提出的核心模型推动/预测系统
将结合描述一般人群中SARS-COV-2传播的机械模型和
合奏调整Kalman滤波器(EAKF)以合并SARS-COV-2废水监视数据
推理。我们将使用丰富的数据(废水监视和多个COVID-19
结果和详细的模型估计(例如,感染率)可用于纽约市(AIM 1)。我们
然后,将在美国的50多个县进行扩展和测试该系统(AIM 2)。使用这些模型,
我们将为公共卫生官员创建易于使用的建模工具(AIM 3)。拟议的工作是
创新和健壮的1)废水中的SARS-COV-2浓度代表了一个复合度量
无论个人测试行为如何,SARS-COV-2的存在; 2)我们将建立预测
仅除废水监视所提供的局势意识而超出了局势意识。我们将设计
模型预测系统为3)使用模块化模型组件的灵活性来容纳多种数据
在各个位置的可用性和4)通过利用纽约市和50+的详细数据和估计来稳健
县测试和改善各种模型形式并量化每个模型的不确定性和准确性。
此外,调查员团队还综合了废水监视和建模方面的专业知识,并将
与公共卫生官员紧密合作,以根据公共卫生需求量身定制建模系统。与SARS-COV-2
在许多社区(目前代表100万美国人)广泛采用的废水监视,
此处开发的模型预测系统可以在将来支持更为主动的Covid-19计划。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Wan Yang其他文献
Wan Yang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Wan Yang', 18)}}的其他基金
UNCOVER: underlying novel causes of onset of very early cancer research
揭秘:极早期癌症研究开始的潜在新原因
- 批准号:
10675591 - 财政年份:2021
- 资助金额:
$ 24.68万 - 项目类别:
UNCOVER: underlying novel causes of onset of very early cancer research
揭秘:极早期癌症研究开始的潜在新原因
- 批准号:
10482393 - 财政年份:2021
- 资助金额:
$ 24.68万 - 项目类别:
UNCOVER: underlying novel causes of onset of very early cancer research
揭秘:极早期癌症研究开始的潜在新原因
- 批准号:
10303652 - 财政年份:2021
- 资助金额:
$ 24.68万 - 项目类别:
Disease Persistence and Population Dynamics: Modeling Measles under Mass Vaccination
疾病持续性和人口动态:大规模疫苗接种下的麻疹建模
- 批准号:
10435483 - 财政年份:2019
- 资助金额:
$ 24.68万 - 项目类别:
Disease Persistence and Population Dynamics: Modeling Measles under Mass Vaccination
疾病持续性和人口动态:大规模疫苗接种下的麻疹模型
- 批准号:
10199927 - 财政年份:2019
- 资助金额:
$ 24.68万 - 项目类别:
Disease Persistence and Population Dynamics: Modeling Measles under Mass Vaccination
疾病持续性和人口动态:大规模疫苗接种下的麻疹建模
- 批准号:
9795652 - 财政年份:2019
- 资助金额:
$ 24.68万 - 项目类别:
相似国自然基金
签字注册会计师动态配置问题研究:基于临阵换师视角
- 批准号:72362023
- 批准年份:2023
- 资助金额:28 万元
- 项目类别:地区科学基金项目
全生命周期视域的会计师事务所分所一体化治理与审计风险控制研究
- 批准号:72372064
- 批准年份:2023
- 资助金额:40 万元
- 项目类别:面上项目
会计师事务所数字化能力构建:动机、经济后果及作用机制
- 批准号:72372028
- 批准年份:2023
- 资助金额:42.00 万元
- 项目类别:面上项目
会计师事务所薪酬激励机制:理论框架、激励效应检验与优化重构
- 批准号:72362001
- 批准年份:2023
- 资助金额:28.00 万元
- 项目类别:地区科学基金项目
环境治理目标下的公司财务、会计和审计行为研究
- 批准号:72332002
- 批准年份:2023
- 资助金额:165.00 万元
- 项目类别:重点项目
相似海外基金
Alzheimer's Disease and Related Dementia-like Sequelae of SARS-CoV-2 Infection: Virus-Host Interactome, Neuropathobiology, and Drug Repurposing
阿尔茨海默病和 SARS-CoV-2 感染的相关痴呆样后遗症:病毒-宿主相互作用组、神经病理生物学和药物再利用
- 批准号:
10661931 - 财政年份:2023
- 资助金额:
$ 24.68万 - 项目类别:
NeuroMAP Phase II - Recruitment and Assessment Core
NeuroMAP 第二阶段 - 招募和评估核心
- 批准号:
10711136 - 财政年份:2023
- 资助金额:
$ 24.68万 - 项目类别:
Mitoquinone/mitoquinol mesylate as oral and safe Postexposure Prophylaxis for Covid-19
米托醌/甲磺酸米托喹诺作为 Covid-19 的口服且安全的暴露后预防
- 批准号:
10727092 - 财政年份:2023
- 资助金额:
$ 24.68万 - 项目类别:
Examining linkages between disrupted care and chronic disease outcomes during the COVID-19 pandemic: a VAMC level spatio-temporal analysis
检查 COVID-19 大流行期间中断的护理与慢性病结果之间的联系:VAMC 级别时空分析
- 批准号:
10641136 - 财政年份:2023
- 资助金额:
$ 24.68万 - 项目类别:
Dissecting the drivers of persistent SARS-CoV-2 infections
剖析 SARS-CoV-2 持续感染的驱动因素
- 批准号:
10736007 - 财政年份:2023
- 资助金额:
$ 24.68万 - 项目类别: