Predict to Prevent: Dynamic Spatiotemporal Analyses of Opioid Overdose to Guide Pre-Emptive Public Health Responses

预测预防:阿片类药物过量的动态时空分析以指导预防性公共卫生应对

基本信息

  • 批准号:
    10444263
  • 负责人:
  • 金额:
    $ 76万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-05-15 至 2027-03-31
  • 项目状态:
    未结题

项目摘要

Predict to Prevent: Dynamic Spatiotemporal Analyses of Opioid Overdose to Guide Pre-Emptive Public Health Responses PROJECT SUMMARY/ABSTRACT Opioid overdose (OD) fatalities have reached crisis levels in all socioeconomic and geographic communities in the US. By utilizing a first-of-its-kind statewide Public Health Data Warehouse (PHD) with multiple linked administrative datasets and state-of-the-art Bayesian spatiotemporal models, we are in a unique position to fill in the fundamental gaps in the field’s ability to rapidly identify current OD patterns, predict future OD epidemics, and evaluate the effectiveness of public health and clinical interventions. In Massachusetts (MA), the State Legislature enacted policy in 2015 that provided authorization to the MA Department of Public Health (MDPH) to develop a massively linked administrative dataset to allow public health officials and policymakers to better understand the extent of and contributors to the opioid OD epidemic. The PHD Warehouse, representing 98% of the MA population, currently links data from 25+ distinct sources (e.g., death records, all-payer claims, post-mortem toxicology, hospital discharges, and the prescription monitoring program). Supported by strong preliminary studies demonstrating the power of the PHD and our strong partnership with MDPH, we aim to develop a new population health analytic framework to support opioid OD control in MA that can be generalizable to other parts of the country. Our Specific Aims are to: 1) Develop a Bayesian multilevel spatiotemporal model to identify individual, interpersonal, community, and societal factors that contribute to opioid OD; 2) develop an efficient Bayesian spatiotemporal model to identify time- space OD clusters, and extend the model to construct a dynamic predictive model; and, 3) evaluate and predict policy and intervention effects through model-based simulation studies to provide practical guidance and decision-making support to public health officials. Aims 1, 2 and 3 can be easily adopted and reproduced by users in other public health jurisdictions and sectors to foster cross-sector, cross-agency opioid OD control. Our approach is innovative due to the use of PHD and sophisticated Bayesian spatiotemporal modeling approaches. The proposed study is highly significant, because it is conceptualized to improve current and future public health practice, facilitating data-driven and evidence-based implementation science interventions in the locations at greatest risk and at the time when they are most needed. Our results can immediately and significantly influence opioid OD prevention policies and practices, guiding pre-emptive public health and clinical responses. We will develop our visualization tools, analytical approaches, and related code, in collaboration with MDPH and our Community Advisory Board (CAB), to enhance PHD capabilities and improve dissemination of findings. Our tools, approaches, and code will also be made available for national dissemination, providing paradigm shifting approaches to address the opioid crisis. Our research directly addresses NIDA’s goal to “Develop new and improved strategies to prevent drug use and its consequences.”
预测预防:阿片类药物过量的动态时空分析以指导 公共卫生先发制人的应对措施 项目概要/摘要 所有社会经济和地理社区的阿片类药物过量 (OD) 死亡人数已达到危机水平 在美国,利用首个全州范围的公共卫生数据仓库 (PHD),其中包含多个数据 链接的管理数据集和最先进的贝叶斯时空模型,我们处于独特的地位 填补该领域快速识别当前 OD 模式能力的基本空白, 预测未来的 OD 流行病,并评估公共卫生和临床干预措施的有效性。 在马萨诸塞州 (MA),州立法机构于 2015 年颁布了政策,向 MA 提供授权 公共卫生部 (MDPH) 将开发一个大规模链接的行政数据集,以便公众能够 卫生官员和政策制定者更好地了解阿片类药物滥用流行的程度和原因。 PHD Warehouse 代表 98% 的 MA 人口,目前链接来自 25 个以上不同来源的数据 (例如,死亡记录、所有付款人索赔、尸检毒理学、出院情况和处方 以强有力的初步研究为支持,证明了博士学位的力量和我们的 与 MDPH 建立强有力的合作伙伴关系,我们的目标是开发一个新的人口健康分析框架来支持阿片类药物 马萨诸塞州的 OD 控制可以推广到全国其他地区,我们的具体目标是: 1) 发展。 用于识别个人、人际、社区和社会的贝叶斯多级时空模型 影响阿片类药物 OD 的因素;2) 开发有效的贝叶斯时空模型来识别时间- 空间 OD 聚类,并扩展模型以构建动态预测模型;3)评估和 通过基于模型的模拟研究预测政策和干预效果,提供实践指导 目标 1、2 和 3 可以很容易地被采纳和复制。 其他公共卫生管辖区和部门的用户,以促进跨部门、跨机构的阿片类药物消耗控制。 我们的方法是创新的,因为使用了 PHD 和复杂的贝叶斯时空建模 拟议的研究非常重要,因为它的概念是为了改进当前和 未来的公共卫生实践,促进数据驱动和基于证据的实施科学干预措施 在风险最大的地点和最需要的时候,我们可以立即提供结果。 显着影响阿片类药物滥用预防政策和实践,指导预防性公共卫生和 我们将开发可视化工具、分析方法和相关代码。 与 MDPH 和我们的社区咨询委员会 (CAB) 合作,以增强 PHD 能力并改进 我们的工具、方法和代码也将提供给国家。 传播,范式提供了直接解决阿片类药物危机的转变方法。 解决了 NIDA 的目标,即“制定新的和改进的策略以防止吸毒及其后果”。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Cici Bauer其他文献

Cici Bauer的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Cici Bauer', 18)}}的其他基金

Addressing COVID-19 Testing Disparities in Vulnerable Populations Using a Community JITAI (Just in Time Adaptive Intervention) Approach: RADxUP Phase III
使用社区 JITAI(及时自适应干预)方法解决弱势群体中的 COVID-19 检测差异:RADxUP 第三阶段
  • 批准号:
    10847026
  • 财政年份:
    2022
  • 资助金额:
    $ 76万
  • 项目类别:
Addressing COVID-19 Testing Disparities in Vulnerable Populations Using a Community JITAI (Just in Time Adaptive Intervention) Approach: RADxUP Phase III
使用社区 JITAI(及时自适应干预)方法解决弱势群体中的 COVID-19 检测差异:RADxUP 第三阶段
  • 批准号:
    10617103
  • 财政年份:
    2022
  • 资助金额:
    $ 76万
  • 项目类别:
Predict to Prevent: Dynamic Spatiotemporal Analyses of Opioid Overdose to Guide Pre-Emptive Public Health Responses
预测预防:阿片类药物过量的动态时空分析以指导预防性公共卫生应对
  • 批准号:
    10618998
  • 财政年份:
    2022
  • 资助金额:
    $ 76万
  • 项目类别:

相似国自然基金

WASP通过影响IL-6R内吞调控Tfh发育和功能
  • 批准号:
    82302055
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
htsA蛋白通过影响碳水化合物摄取抵抗宿主免疫杀伤的机制研究
  • 批准号:
    82302535
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
脱氧胆酸通过c-Abl-YAP通路调控肠粘膜屏障功能对肝脂肪变形成影响
  • 批准号:
    82370558
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
四君子汤通过调节胃粘膜逆生细胞命运影响胃癌前疾病与胃癌发生的作用与机制研究
  • 批准号:
    82373110
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
Piezo1通过PRMT1调节杯状细胞内质网稳态对IBS黏液屏障功能的影响与机制研究
  • 批准号:
    82370548
  • 批准年份:
    2023
  • 资助金额:
    48 万元
  • 项目类别:
    面上项目

相似海外基金

Implementation of Innovative Treatment for Moral Injury Syndrome: A Hybrid Type 2 Study
道德伤害综合症创新治疗的实施:2 型混合研究
  • 批准号:
    10752930
  • 财政年份:
    2024
  • 资助金额:
    $ 76万
  • 项目类别:
Regulation of human tendon development and regeneration
人体肌腱发育和再生的调节
  • 批准号:
    10681951
  • 财政年份:
    2023
  • 资助金额:
    $ 76万
  • 项目类别:
Implementation and Implications of Sickle Cell Trait Screening in the NCAA
镰状细胞性状筛查在 NCAA 中的实施及其意义
  • 批准号:
    10842764
  • 财政年份:
    2023
  • 资助金额:
    $ 76万
  • 项目类别:
Optimizing integration of veterinary clinical research findings with human health systems to improve strategies for early detection and intervention
优化兽医临床研究结果与人类健康系统的整合,以改进早期检测和干预策略
  • 批准号:
    10764456
  • 财政年份:
    2023
  • 资助金额:
    $ 76万
  • 项目类别:
Development of a novel visualization, labeling, communication and tracking engine for human anatomy.
开发一种新颖的人体解剖学可视化、标签、通信和跟踪引擎。
  • 批准号:
    10761060
  • 财政年份:
    2023
  • 资助金额:
    $ 76万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了