Hemodynamically induced molecules regulating the initiation of intracranial aneurysms
血流动力学诱导分子调节颅内动脉瘤的发生
基本信息
- 批准号:10592695
- 负责人:
- 金额:$ 43.88万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-27 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:AffectAgeAmericanAneurysmAnimal ModelArteriesAutomobile DrivingAutopsyBMP2 geneBilateralBiochemistryBlood CirculationBlood VesselsBlood flowBrainBrain AneurysmsCarotid ArteriesCase StudyCell ProliferationCellular biologyCerebrovascular CirculationCerebrumCharacteristicsCircle of WillisClinicalCoupledDistalEndothelial CellsEndotheliumEventExcisionExtracellular Matrix DegradationGenderGene ExpressionGene Expression ProfilingGenesGeneticGoalsGrowthGrowth FactorHistologicHistologyHumanHypertensionInterventionIntracranial AneurysmInvestigationLasersLeadLesionLigationLiquid substanceLocationMeasuresMedialModelingMolecularOryctolagus cuniculusPathogenesisPathologicPathway interactionsPatientsPharmacologyPlayPreventionPrevention strategyProcessRegulatory PathwayResearch PersonnelRiskRoleRuptureRuptured AneurysmSignal PathwaySignal TransductionSiteSmokingStrokeStructureSurvivorsSystemTestingThinnessTissuesVascular remodelingWorkarterial remodelingbasilar arterybehavioral constructcerebral arteryhemodynamicsinhibitorinsightintima medialifestyle interventionneurosurgerynovel strategiespreventreceptorresponseshear stresstranscriptometranscriptome sequencing
项目摘要
Project Summary Ruptured intracranial aneurysms (IAs) are the main cause of non-traumatic subarachnoid
hemorrhage, the most severe form of stroke. Discovering ways to prevent IAs from forming could dramatically
impact patients’ lives, but understanding of why and how IAs form is limited. This proposal aims to identify
molecular signals that initiate IAs by examining arterial gene expression during IA formation.
Hemodynamics play a crucial role in IAs. Arteries respond to changes in blood flow by remodeling to keep
fluid shear stress at baseline levels without loss of vessel strength and integrity. But in IAs, remodeling thins and
weakens the arterial wall. It is hypothesized that IAs form when flow induces endothelial cells in the intima to
produce signals that cause maladaptive responses in the media. In a proof-of concept study, the investigators
used RNAseq of microdissected cerebral arteries in rabbits to observe gene expression in the intima under
aneurysm-inducing flow, and in the contiguous media where dystrophic remodeling occurs. The results
demonstrated that this approach can reveal potential regulators of IA formation by identifying intimal genes that
are uniquely expressed in nascent IAs and whose expression correlates with destructive medial responses.
A comprehensive screen is proposed for genes that control dystrophic remodeling during IA formation. This
will be done using a rabbit model, in which ligation of the carotid arteries increases flow in the posterior
circulation, causing constructive enlargement of the basilar artery while an IA forms at the basilar terminus. Gene
expression will be measured by RNAseq in intima and media that are laser microdissected from the basilar artery
and terminus, and transcriptomes from ligated and unligated rabbits will be compared to identify flow-induced
changes. Changes at the basilar terminus will be compared with the basilar artery to reveal genes that are unique
to dystrophic IA remodeling. Correlation analysis will then be performed on intimal and medial gene pairs to
detect potential signal-response relationships.
Preliminary studies suggest that BMP2 is one such signal for IA formation. To test this, rabbits will be treated
with JL5, an inhibitor of BMP2-receptor activity, while IAs are induced by carotid ligation. Tissues will be assessed
for (a) expression of medial genes that are characteristic of aneurysmal remodeling, using RNAseq, and (b)
initiation of aneurysmal damage, as determined histologically. It is predicted that disrupting the BMP2 signaling
pathway will prevent dystrophic responses in the media and inhibit flow-induced IA-initiating damage.
This project will identify regulatory pathways acting specifically during pathological remodeling that leads to
IAs. In addition, it will provide unprecedented characterization of gene expression during trophic and dystrophic
arterial remodeling. Understanding the molecular mechanisms behind vascular responses to flow will inform
strategies for prevention and treatment of pathological remodeling events, and could ultimately lead to
pharmacological interventions for clinical mitigation of IAs.
项目摘要 颅内动脉瘤破裂 (IA) 是非创伤性蛛网膜下腔的主要原因
出血是最严重的中风形式,找到预防 IAs 形成的方法可能会显着改善。
影响患者的生活,但对 IAs 形成原因和方式的了解有限。该提案旨在确定。
通过检查 IA 形成过程中的动脉基因表达来启动 IAs 的分子信号。
血流动力学在 IAs 中发挥着至关重要的作用。动脉通过重塑来响应血流变化以保持稳定。
流体剪切应力保持在基线水平,不会损失血管强度和完整性,但在 IAs 中,重塑会变薄和变薄。
当血流诱导内膜中的内皮细胞形成 IAs 时,会削弱动脉壁。
在一项概念验证研究中,研究人员产生了导致媒体适应不良反应的信号。
使用 RNAseq 显微解剖兔脑动脉来观察内膜中的基因表达
动脉瘤诱导血流,以及发生营养不良重塑的邻近介质。
证明这种方法可以通过识别内膜基因来揭示 IA 形成的潜在调节因子
在新生 IAs 中独特表达,其表达与破坏性内侧反应相关。
建议对 IA 形成过程中控制营养不良重塑的基因进行全面筛选。
将使用兔子模型来完成,其中颈动脉的结扎增加了后部的血流
循环,导致基底动脉建设性扩张,同时在基底动脉末端形成 IA。
将通过 RNAseq 测量从基底动脉激光显微切割的内膜和中膜中的表达
和末端,以及来自结扎和未结扎兔子的转录组将被比较,以识别流诱导的
基底动脉末端的变化将与基底动脉进行比较,以揭示独特的基因。
然后将对内膜和内侧基因对进行相关性分析。
检测潜在的信号响应关系。
初步研究表明,BMP2 是 IA 形成的信号之一。为了测试这一点,将对兔子进行治疗。
使用 BMP2 受体活性抑制剂 JL5,同时评估颈动脉结扎诱导的 IAs。
(a) 使用 RNAseq 表达动脉瘤重塑特征的内侧基因,以及 (b)
根据组织学结果预测,BMP2 信号传导受到破坏。
途径将防止介质中的营养不良反应并抑制流动诱导的 IA 引发损伤。
该项目将确定在病理重塑过程中具体发挥作用的调控途径,从而导致
此外,它将提供营养和营养不良期间基因表达的前所未有的表征。
了解血管对血流反应背后的分子机制将有助于了解动脉重塑。
预防和治疗病理重塑事件的策略,并最终可能导致
临床缓解 IAs 的药物干预。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
JOHN P KOLEGA其他文献
JOHN P KOLEGA的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
HTRA1介导CTRP5调控脂代谢通路在年龄相关性黄斑变性中的致病机制研究
- 批准号:82301231
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
PLAAT3降低介导线粒体降解异常在年龄相关性白内障发病中的作用及机制
- 批准号:82301190
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
跨尺度年龄自适应儿童头部模型构建与弥漫性轴索损伤行为及表征研究
- 批准号:52375281
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
ALKBH5通过SHP-1调控视网膜色素上皮细胞铁死亡在年龄相关性黄斑变性中的作用机制研究
- 批准号:82301213
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
视网膜色素上皮细胞中NAD+水解酶SARM1调控自噬溶酶体途径参与年龄相关性黄斑变性的机制研究
- 批准号:82301214
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Executive functions in urban Hispanic/Latino youth: exposure to mixture of arsenic and pesticides during childhood
城市西班牙裔/拉丁裔青年的执行功能:童年时期接触砷和农药的混合物
- 批准号:
10751106 - 财政年份:2024
- 资助金额:
$ 43.88万 - 项目类别:
Fluency from Flesh to Filament: Collation, Representation, and Analysis of Multi-Scale Neuroimaging data to Characterize and Diagnose Alzheimer's Disease
从肉体到细丝的流畅性:多尺度神经影像数据的整理、表示和分析,以表征和诊断阿尔茨海默病
- 批准号:
10462257 - 财政年份:2023
- 资助金额:
$ 43.88万 - 项目类别:
Illuminating neurodegenerative tauopathy from somatic genomic landscapes of single human brain cells
从单个人脑细胞的体细胞基因组景观中阐明神经退行性 tau 病
- 批准号:
10686570 - 财政年份:2023
- 资助金额:
$ 43.88万 - 项目类别:
Unraveling the synaptic and circuit mechanisms underlying a plasticity-driving instructive signal
揭示可塑性驱动指导信号背后的突触和电路机制
- 批准号:
10686592 - 财政年份:2023
- 资助金额:
$ 43.88万 - 项目类别:
Hospice exposure and utilization among older African Americans with ADRD and their decisional support persons
患有 ADRD 的老年非洲裔美国人及其决策支持人员的临终关怀暴露和利用
- 批准号:
10679558 - 财政年份:2023
- 资助金额:
$ 43.88万 - 项目类别: