SMART BIOELECTRONIC IMPLANTS FOR CONTROLLED DELIVERY OF THERAPEUTIC PROTEINS IN VIVO AND ITS APPLICATION IN LONG-TERM TREATMENT OF HEMOPHILIA A
用于体内治疗性蛋白质控制输送的智能生物电子植入物及其在血友病 A 长期治疗中的应用
基本信息
- 批准号:10615840
- 负责人:
- 金额:$ 60.47万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-05-01 至 2026-01-31
- 项目状态:未结题
- 来源:
- 关键词:AddressAllogenicAmericanAnimal ModelBeta CellBiocompatible MaterialsBiologicalBiomedical EngineeringBiotechnologyCell LineCell SurvivalCell TherapyCell TransplantationCell physiologyCell secretionCellsCellular StructuresChinaChronicChronic DiseaseClinicalDevelopmentDevice DesignsDevicesDiabetes MellitusDiseaseDisease modelDoseDrug Delivery SystemsDrug ModulationDrug TargetingEconomicsElectronicsElementsEmerging TechnologiesEncapsulatedEngineeringEnsureFactor VIIIFibrosisForeign BodiesForeign-Body ReactionFrustrationGasesGene ActivationGenerationsGeneticGlucoseGraft SurvivalHemophilia AHumanHuman EngineeringHybrid CellsHypoxiaImmuneImmune responseImmune systemImmunosuppressionImplantIn SituInflammationLightLiver diseasesMaintenanceMedicineMembraneMicrocapsules drug delivery systemMicrofabricationModelingModificationMonitorMusNatureNutrientOpticsOxygenPermeabilityPharmaceutical PreparationsPopulationPorosityPre-Clinical ModelPreclinical TestingProductionPropertyProtein SecretionProteinsProtonsRiskRodentScientific Advances and AccomplishmentsSiliconesSourceTechniquesTechnologyTestingTherapeuticTimeTransplantationWorkXenograft procedurebetacell therapybioelectronicsbiomaterial compatibilitycapsulecellular engineeringclinical translationdensitydesignepigenetic silencingflexibilityimmune functionimmunogenicimplantable deviceimplantationimprovedin vivoisletmouse modelnonhuman primatenoveloptogeneticsoxygen transportpreventprotein transportresponsesolid statestable cell linestandard of caresurface coatingtechnology developmenttherapeutic proteintransgene expressionwireless
项目摘要
Cell-based therapies, where naturally or artificially engineered cells secreting therapeutic
proteins are grafted onto the body to act as biological drug factories, are an attractive
approach for long-term treatment of chronic diseases such as hemophilia, diabetes and liver
disorders. However, ‘off the shelf’ therapeutic cells are immunogenic to the host and must be
protected from the host immune system. Cell-encapsulation has emerged as an attractive
strategy to transplant these cells without chronic immunosuppression. Here, cells are placed
in an immune-isolating device which physically separates the cells from the components of the
immune system while providing access to oxygen and nutrients. Retrievable macroscale cell-
encapsulation devices (macrodevice), are attractive in this context as they provide a safer
path to clinical translation. Unfortunately, a standalone macrodevice that remains functional in
humans over long-periods (>6 months) is yet to be realized due to two core challenges: 1) a
foreign-body reaction to the implanted device causing inflammation and fibrosis, and 2)
inadequate supply of oxygen and nutrients to the encapsulated cells. Here, we propose to
build on several promising recent advances in biomaterials design, microfabrication,
bioelectronics and cell engineering from our team to develop an advanced “smart”
macrodevice platform with integrated electronic components which overcomes the major
limitations of current device designs. First, we will develop an engineered cell line which is
amenable to long term encapsulation and suitable for clinical translation. Landing pads within
these cells will ensure stable transgene expression, allowing for broad control of therapeutic
protein secretion (Aim 1). Separately, we will develop a bioelectronic macrodevice as a
platform for long- term transplant of these cells in vivo. Our device will incorporate novel
membranes with uniform/controlled pore-sizes and enhanced oxygen transport properties. In
parallel, we will develop new surface coating techniques to minimize fibrosis and ensure long-
term graft survival. We will integrate proton exchange membranes and optoelectronic
components to allow a) in-situ oxygen generation, and b) optical gene activation to allow for
triggerable control of protein production by the encapsulated cells (Aim 2). Finally, we will test
the device in B6 mice using a model protein (SEAP) to test for long term survival of cells and
external control of protein delivery. We will develop the device as a platform to delivery of
Factor VIII for the treatment of Hemophilia A (Aim 3) as a model disease. If successful, the
platform will represent a qualitative technological advancement in the field of cell therapy.
基于细胞的疗法,自然或人工设计的细胞分泌疗法
蛋白质被嫁接到人体上以充当生物药物工厂,是一种吸引人
长期治疗慢性疾病,例如血友病,糖尿病和肝脏
疾病。但是,“离架子”的治疗细胞对宿主具有免疫原性,必须是
免受宿主免疫系统的保护。细胞包裹已成为一种吸引人的
在没有慢性免疫抑制的情况下移植这些细胞的策略。在这里,将细胞放置
在一种免疫隔离装置中,该设备将细胞从物理上分开
免疫系统,同时提供氧气和养分。可检索的宏观细胞 -
封装设备(Macrodevice)在此上下文中很有吸引力,因为它们提供了更安全的
临床翻译的途径。不幸的是,一个独立的宏观电视节目
由于两个核心挑战:1)
外国体体对植入装置的反应,导致感染和纤维化,2)
氧气和养分不足向包裹的细胞供应。在这里,我们建议
建立在生物材料设计的最新诺言,微加工,
来自我们团队的生物电子学和细胞工程,以开发高级“智能”
具有集成电子组件的宏观电视平台,它克服了主要的
当前设备设计的局限性。首先,我们将开发一条工程的单元线
适合长期封装,适合临床翻译。里面的降落垫
这些细胞将确保稳定的转化表达,从而可以广泛控制治疗
蛋白质分泌(目标1)。另外,我们将开发出生物电子宏观电视作为一个
这些细胞在体内长期移植的平台。我们的设备将包含小说
具有均匀/受控孔径和增强氧运输特性的膜。在
并行,我们将开发新的表面涂料技术,以最大程度地减少纤维化并确保长期
术语移植生存。我们将整合质子交换机制和光电子
允许a)原位氧的成分,b)光学基因激活以允许
可触发封装细胞对蛋白质产生的控制(AIM 2)。最后,我们将测试
使用模型蛋白(SEAP)测试B6小鼠中的设备,以测试细胞的长期存活和
蛋白质递送的外部控制。我们将开发设备作为交付的平台
VIII的因子治疗血友病A(AIM 3)作为模型疾病。如果成功,
平台将代表细胞疗法领域的定性技术进步。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
DANIEL G ANDERSON其他文献
DANIEL G ANDERSON的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('DANIEL G ANDERSON', 18)}}的其他基金
Nonviral delivery techniques for in vivo prime editing
用于体内引物编辑的非病毒传递技术
- 批准号:
10548169 - 财政年份:2022
- 资助金额:
$ 60.47万 - 项目类别:
Nonviral delivery techniques for in vivo prime editing
用于体内引物编辑的非病毒传递技术
- 批准号:
10344605 - 财政年份:2022
- 资助金额:
$ 60.47万 - 项目类别:
SMART BIOELECTRONIC IMPLANTS FOR CONTROLLED DELIVERY OF THERAPEUTIC PROTEINS IN VIVO AND ITS APPLICATION IN LONG-TERM TREATMENT OF HEMOPHILIA A
用于体内治疗性蛋白质控制输送的智能生物电子植入物及其在血友病 A 长期治疗中的应用
- 批准号:
10446179 - 财政年份:2022
- 资助金额:
$ 60.47万 - 项目类别:
Combinatorial and computational design of bnAb mRNA vaccines for HIV
HIV bnAb mRNA 疫苗的组合和计算设计
- 批准号:
10592273 - 财政年份:2021
- 资助金额:
$ 60.47万 - 项目类别:
Combinatorial and computational design of bnAb mRNA vaccines for HIV
HIV bnAb mRNA 疫苗的组合和计算设计
- 批准号:
10386924 - 财政年份:2021
- 资助金额:
$ 60.47万 - 项目类别:
Develop combinatorial non-viral and viral CRISPR delivery for lung diseases
开发针对肺部疾病的组合非病毒和病毒 CRISPR 递送
- 批准号:
10274832 - 财政年份:2018
- 资助金额:
$ 60.47万 - 项目类别:
Interfering with the macrophage life cycle of atherosclerosis
干扰动脉粥样硬化的巨噬细胞生命周期
- 批准号:
9412185 - 财政年份:2017
- 资助金额:
$ 60.47万 - 项目类别:
High throughput microfluidic intracellular delivery platform
高通量微流控细胞内递送平台
- 批准号:
8706186 - 财政年份:2013
- 资助金额:
$ 60.47万 - 项目类别:
High throughput microfluidic intracellular delivery platform
高通量微流控细胞内递送平台
- 批准号:
8504309 - 财政年份:2013
- 资助金额:
$ 60.47万 - 项目类别:
High throughput microfluidic intracellular delivery platform
高通量微流控细胞内递送平台
- 批准号:
8839787 - 财政年份:2013
- 资助金额:
$ 60.47万 - 项目类别:
相似国自然基金
肿瘤球混合堆砌-诱导分化构建同源性血管化结肠癌类器官用于血管发生干预靶点筛选
- 批准号:82373453
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
非小细胞肺癌中靶向抑制同源性重组修复增敏免疫检查点抑制剂疗效的研究和机制探索
- 批准号:82103045
- 批准年份:2021
- 资助金额:24.00 万元
- 项目类别:青年科学基金项目
非小细胞肺癌中靶向抑制同源性重组修复增敏免疫检查点抑制剂疗效的研究和机制探索
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
FHF2对肥厚心肌钙致钙释放的影响及其机制研究
- 批准号:81900249
- 批准年份:2019
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
PTEN通过激活细胞程序性坏死通路促进APP淀粉样蛋白代谢的机制研究
- 批准号:81901116
- 批准年份:2019
- 资助金额:20.5 万元
- 项目类别:青年科学基金项目
相似海外基金
ADEPT-STAR therapy for high risk neuroblastoma
ADEPT-STAR 治疗高危神经母细胞瘤
- 批准号:
10760738 - 财政年份:2023
- 资助金额:
$ 60.47万 - 项目类别:
Allogeneic BAFF Ligand Based CAR T-Cells as a Novel Therapy for Systemic Lupus Erythematous
基于同种异体 BAFF 配体的 CAR T 细胞作为系统性红斑狼疮的新疗法
- 批准号:
10761003 - 财政年份:2023
- 资助金额:
$ 60.47万 - 项目类别:
Deciphering unintended large gene modifications in gene editing for sickle cell disease
破译镰状细胞病基因编辑中意外的大基因修饰
- 批准号:
10720685 - 财政年份:2023
- 资助金额:
$ 60.47万 - 项目类别:
Islet dosing and loading density in injection molded macroencapsulation devices
注塑宏观封装装置中的胰岛剂量和装载密度
- 批准号:
10716174 - 财政年份:2023
- 资助金额:
$ 60.47万 - 项目类别:
Sustained regulation of hypothalamus-pituitary-ovary hormones with tissue-engineered ovarian constructs as a treatment for osteoporosis in females
利用组织工程卵巢结构持续调节下丘脑-垂体-卵巢激素作为女性骨质疏松症的治疗方法
- 批准号:
10659277 - 财政年份:2023
- 资助金额:
$ 60.47万 - 项目类别: