Islet dosing and loading density in injection molded macroencapsulation devices
注塑宏观封装装置中的胰岛剂量和装载密度
基本信息
- 批准号:10716174
- 负责人:
- 金额:$ 29.84万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-08-04 至 2024-08-03
- 项目状态:已结题
- 来源:
- 关键词:AddressAdverse eventAlginatesAllogenicAlternative TherapiesAmericanAnimal ModelAnimalsAntigensAreaBenchmarkingBiocompatible MaterialsCadaverCell TherapyCell TransplantationCellsChronicClinicClinicalClinical ResearchComplicationComplications of Diabetes MellitusComputer ModelsDevice DesignsDevicesDiabetes MellitusDoseEligibility DeterminationEncapsulatedEngraftmentFibrosisGeometryGraft RejectionGraft SurvivalHepaticHistologicHumanHydrogelsImmuneImmune responseImmunosuppressionImmunosuppressive AgentsInjectionsInsulinInsulin-Dependent Diabetes MellitusIslets of Langerhans TransplantationLongevityMethodsMicrocapsules drug delivery systemMissionModelingMoldsMorphologyOmentumOutcomeOxygenPancreasPatientsPhasePopulationPortal vein structurePublic HealthRattusRegimenReproducibilityResearchRisk ReductionSafetySiteSmall Business Innovation Research GrantSurfaceSurgeonTechniquesTranslatingTranslationsTransplantationUnited States National Institutes of HealthVascularizationWorkclinical translationdensitydesigndiabeticdiabetic ratdosageeuglycemiaexperimental studygraft functionhigh riskimprovedin vivoinsulin signalingisletoxygen transportpatient populationphase 2 studypre-clinicalpreclinical studypreservationpreventsuccesstransplant model
项目摘要
PROJECT SUMMARY/ABSTRACT:
Clinical islet transplantation is a promising alternative therapy for the treatment of type 1 diabetes, with the
potential to reduce or eliminate secondary complications and adverse events. The potent immune response to
islets remains the greatest challenge to long-term engraftment and function, which necessitates large numbers
of islets and typically multiple pancreatic donors to achieve euglycemia, a complication further exacerbated by
donor shortages. Methods to eliminate graft rejection in the absence of chronic systemic immunosuppression
will vastly expand the eligible patient population and reduce risks associated with cell therapy. Islet encapsulation
within a nondegradable biomaterial has long been proposed as a means for reducing immune response to
transplanted grafts via a physical barrier to direct antigen recognition by immune cells, with decades of promising
research in preclinical studies; however, translation of this technique has been hampered by poor clinical
outcomes and safety concerns. As such, macroencapsulation devices for islet encapsulation have been explored
in preclinical and clinical studies, and though they confer the safety benefit of a single, retrievable device,
functional success of these devices has been limited due in large part to poor oxygen transport. Addressing
these specific limitations facing macroencapsulation devices, we use computational modeling-guided device
design for improved oxygen transport, and degradable hydrogel-guided enhanced vascularization at the device
surface to further maximize oxygen access and mitigate fibrosis. We recently developed a hydrogel injection
molding-based method to generate high surface area to volume hydrogel macroencapsulation geometries, a
method that enables surgeons to generate encapsulated islets in the clinic upon receipt of cadaveric primary
islet isolations. This method is highly reproducible, works with diverse hydrogels, and simple to implement.
In this Phase I SBIR application, we will investigate the optimal islet density within macroencapsulation
devices in syngeneic studies and identify the optimal allogeneic islet dosage required for diabetes reversal to
inform Phase II studies in preclinical large animal allogeneic studies. This will be addressed in the experiments
of the following Specific Aims: (1) Syngeneic islet density optimization in a macroencapsulated diabetic rat
omentum transplant model, and (2) Allogeneic islet dose optimization in a macroencapsulated diabetic rat
omentum transplant model. The expected outcome is that these studies investigating islet density and dosage
within high surface area to volume macroencapsulation designs will identify the appropriate configuration to
advance to phase II preclinical large animal models.
项目摘要/摘要:
临床胰岛移植是治疗 1 型糖尿病的一种有前途的替代疗法,
减少或消除继发并发症和不良事件的潜力。强大的免疫反应
胰岛仍然是长期植入和功能的最大挑战,这需要大量的
胰岛和通常多个胰腺供体以实现血糖正常,这种并发症进一步加剧
捐助者短缺。在没有慢性全身免疫抑制的情况下消除移植排斥的方法
将极大地扩大符合条件的患者群体并降低与细胞治疗相关的风险。胰岛封装
长期以来,人们一直提出将不可降解的生物材料作为减少免疫反应的一种手段。
移植的移植物通过物理屏障直接被免疫细胞识别抗原,具有数十年的前景
临床前研究;然而,由于临床效果不佳,该技术的转化受到阻碍
结果和安全问题。因此,已经探索了用于胰岛封装的宏观封装装置
在临床前和临床研究中,尽管它们具有单一可回收装置的安全优势,
这些设备的功能成功在很大程度上是由于氧气输送不良而受到限制。寻址
这些宏观封装设备面临的具体限制,我们使用计算建模引导设备
改善氧气输送的设计,以及可降解水凝胶引导的增强设备血管化
表面以进一步最大化氧气进入并减轻纤维化。我们最近开发了一种水凝胶注射剂
基于成型的方法来生成高表面积体积水凝胶宏观封装几何形状,
使外科医生能够在收到尸体原代细胞后在诊所生成封装胰岛的方法
胰岛隔离。该方法具有高度重复性,适用于多种水凝胶,并且易于实施。
在此 I 期 SBIR 应用中,我们将研究宏观封装内的最佳胰岛密度
同基因研究中的设备,并确定糖尿病逆转所需的最佳同种异体胰岛剂量
为临床前大型动物同种异体研究的 II 期研究提供信息。这将在实验中解决
以下具体目标: (1) 大囊糖尿病大鼠的同基因胰岛密度优化
大网膜移植模型,以及 (2) 大囊糖尿病大鼠的同种异体胰岛剂量优化
大网膜移植模型。预期结果是这些研究调查胰岛密度和剂量
在高表面积体积宏观封装设计中,将确定适当的配置
进入II期临床前大型动物模型。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Oren Snir其他文献
Oren Snir的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
GNB3联合光谱CT冠周脂肪组学预警ACS后心血管不良事件的模型构建
- 批准号:82302186
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于机器学习和影像学多参数融合的心血管不良事件风险预测模型研究
- 批准号:82370513
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
基于效用错位视角的医疗不良事件管理政策的引导体系优化研究
- 批准号:72304012
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于人工智能和多模态信息预测复杂下肢动脉病变术后不良事件的算法机制研究
- 批准号:82370499
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
基于真实世界数据的药物相互作用相关不良事件风险评估及其管理策略研究
- 批准号:72304010
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Development of bio-integrated devices to enhance transplant survival for subcutaneous encapsulated cell therapies
开发生物集成设备以提高皮下封装细胞疗法的移植存活率
- 批准号:
10525644 - 财政年份:2022
- 资助金额:
$ 29.84万 - 项目类别:
Development of bio-integrated devices to enhance transplant survival for subcutaneous encapsulated cell therapies
开发生物集成设备以提高皮下封装细胞疗法的移植存活率
- 批准号:
10634688 - 财政年份:2022
- 资助金额:
$ 29.84万 - 项目类别:
Material-guided delivery and local activation of bioorthogonal prodrugs
生物正交前药的材料引导递送和局部激活
- 批准号:
9907002 - 财政年份:2019
- 资助金额:
$ 29.84万 - 项目类别:
Material-guided delivery and local activation of bioorthogonal prodrugs
生物正交前药的材料引导递送和局部激活
- 批准号:
10238760 - 财政年份:2019
- 资助金额:
$ 29.84万 - 项目类别:
Early Antipseudomonal Therapy in Cystic Fibrosis
囊性纤维化的早期抗假单胞菌治疗
- 批准号:
7471391 - 财政年份:2004
- 资助金额:
$ 29.84万 - 项目类别: