Artery biomechanics and vascular damage in sickle cell disease
镰状细胞病的动脉生物力学和血管损伤
基本信息
- 批准号:10606485
- 负责人:
- 金额:$ 56.41万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-05-01 至 2025-04-30
- 项目状态:未结题
- 来源:
- 关键词:5 year oldAccelerationAdultAffectAfricanAgeAge MonthsAgingAneurysmAngiographyArterial DisorderArteriesAtherosclerosisAutopsyBiochemicalBiomechanicsBiomedical EngineeringBlood VesselsBone MarrowBone Marrow TransplantationBrain hemorrhageCardiovascular DiseasesCardiovascular systemCarotid ArteriesCathepsinsCessation of lifeChildChronicCollagenCysteineDataDiseaseDisease ProgressionElastasesElasticityElastinEndothelial CellsFutureGenetic DiseasesGenetic ModelsGenotypeGoalsHealthHematological DiseaseHemorrhageHeterozygoteHumanIndividualInflammationInflammatoryInheritedInjectionsInternal carotid artery structureInterventionIschemic StrokeJUN geneKnowledgeLifeLife ExpectancyLinkLiquid substanceMAPK8 geneMagnetic ResonanceMaintenanceMechanicsMediatingMicrocirculationMissionModelingMolecularMonitorMonocytosisMorphologyMusNanotechnologyOutcomePaperPathologicPathologyPatientsPeptide HydrolasesPeripheral Blood Mononuclear CellPersonsPharmacologic SubstancePhysiologicalProteinsPsyche structurePublic HealthPublishingQuality of lifeRegulationResearchResearch PersonnelRiskRoleSP600125Sickle CellSickle Cell AnemiaSignal PathwaySignal TransductionSpecimenStenosisStrokeStructureTNF geneTestingThinnessTranscription Factor AP-1Transgenic MiceTransgenic OrganismsUnited StatesUnited States National Institutes of HealthVascular DiseasesWild Type MouseWorkage relatedanterior cerebral arteryarterial remodelingarterial stiffnesscarboxypeptidase Ccathepsin Kcerebrovascularcollagenasedisabilityefficacy evaluationhigh riskhuman diseaseimprovedinhibitorinnovationmiddle cerebral arterymouse modelnanoparticlenanoparticle deliverynew therapeutic targetnovelnovel therapeuticspharmacologicphysically handicappedpostcapillary venulepredictive markerpreservationpreventracial minorityresponseshear stressstroke risksuccess
项目摘要
Sickle cell disease (SCD) affects approximately 100,000 people in the U.S. but 300,000 babies are born with
SCD every year globally. Currently few pharmaceutical options are available as a therapy, and life expectancy
is still low for these individuals. Consequences of accelerated arterial damage include a 221-fold increased risk
of strokes in children and then increased risk of hemorrhagic strokes during the third decade of life. Elastic lamina
fragmentation were hallmarks identified in autopsy specimens of children with SCD, but underlying mechanisms
are unclear and therefore cannot be prevented. Cysteine cathepsins are powerful proteases implicated in elastin
and collagen degradation in cardiovascular disease (i.e. atherosclerosis). It was recently published by the PIs
that cathepsins are similarly active in a transgenic sickle cell mouse model, and inhibition of JNK signaling
blocked this as well as pathological arterial remodeling and biomechanical consequences. The long term goal
is to identify novel therapeutic targets to inhibit proteolytic activity and cellular mechanisms that cause
accelerated elastin and collagen degradation and pathological biomechanics in arteries of children and adults
with SCD, and determine accumulated damage as they age. The objective is to investigate cathepsin-mediated
arteriopathy and pathological biomechanical changes in large arteries due to SCD causing irreparable damage,
and if curative bone marrow therapies prevent further arterial remodeling. Based on preliminary data and
published studies, the central hypothesis is that cathepsin-mediated elastinolytic and collagenolytic activity in
large arteries is JNK-dependent and downstream of the chronic inflammation (TNFα and monocytosis) caused
by sickle cell disease. This hypothesis will be tested according to the following aims: Aim 1. To determine roles
of cathepsin K in elastic lamina and collagen degradation by SCD as mice age and accumulate damage to
arteries using a new mouse model that was generated by the investigators that is transgenic for sickle cell
disease but null for cathepsin K. Aim 2. To improve JNK inhibition strategies that downregulate cathepsin
expression and protect arterial integrity. Aim 3. To determine efficacy of curative BMT in preventing further
arterial damage, and the need for further pharmaceutical interventions. This work is significant because its
success will identify mechanisms to preserve integrity of arteries that undergo progressive damage over a
lifetime with SCD even after curative bone marrow transplants. Innovative aspects include: 1) Studying arterial
remodeling complications of SCD as opposed to the deoxygenated post-capillary venules and microcirculation
that has dominated the field; 2) decomposing collagen degradation from elastin fragmentation and impact on
arterial mechanics in SCD; and 3) identifying critical ages by which maintenance of vascular integrity may offer
improved chance of preventing future cardiovascular and cerebrovascular complications, impacting quality and
duration of life of those living with the genetic disorder sickle cell disease.
在美国,大约有 100,000 人患有镰状细胞病 (SCD),但有 300,000 名婴儿出生时患有镰状细胞病
目前全球每年都会出现 SCD 的治疗方法和预期寿命。
对于这些人来说,加速动脉损伤的后果仍然很低,其中风险增加了 221 倍。
儿童中风的风险增加,然后在生命的第三个十年中出血性中风的风险增加。
碎片是 SCD 儿童尸检标本中发现的标志,但其潜在机制
尚不清楚,因此无法预防半胱氨酸组织蛋白酶是与弹性蛋白有关的强大蛋白酶。
心血管疾病(即动脉粥样硬化)中的胶原蛋白降解最近由 PI 发表。
组织蛋白酶在转基因镰状细胞小鼠模型中具有类似的活性,并且抑制 JNK 信号传导
阻止这一现象以及病理性动脉重塑和生物力学后果是长期目标。
是确定新的治疗靶点来抑制蛋白水解活性和导致
儿童和成人动脉中弹性蛋白和胶原蛋白加速降解和病理生物力学
并确定随着年龄的增长而累积的损伤,目的是研究组织蛋白酶介导的。
SCD 引起的动脉病和大动脉病理性生物力学变化造成不可挽回的损害,
根据初步数据和,治愈性骨髓疗法是否可以防止进一步的动脉重塑。
已发表的研究中,中心假设是组织蛋白酶介导的弹性蛋白溶解和胶原蛋白溶解活性
大动脉是 JNK 依赖性的,是慢性炎症(TNFα 和单核细胞增多症)引起的下游
该假设将根据以下目标进行检验: 目标 1. 确定角色。
随着小鼠年龄的增长和累积损伤,弹性层中的组织蛋白酶 K 和 SCD 导致的胶原蛋白降解
使用研究人员创建的镰状细胞转基因新小鼠模型进行动脉研究
目标 2. 改善下调组织蛋白酶的 JNK 抑制策略
目标 3. 确定治疗性 BMT 在预防进一步发生方面的功效。
动脉损伤,以及需要进一步的药物干预,这项工作意义重大,因为它。
成功将找到保护动脉完整性的机制,这些动脉在一段时间内会遭受渐进性损伤。
即使在治疗性骨髓移植后,SCD 患者的生命周期仍存在创新性的方面包括: 1) 研究动脉。
与毛细血管后微静脉脱氧和微循环相比,SCD 的重塑并发症
2) 分解弹性蛋白碎片造成的胶原蛋白降解及其影响
SCD 中的动脉力学;3) 确定维持血管完整性的关键年龄
提高预防未来心脑血管并发症的机会,影响质量和
镰状细胞病遗传性疾病患者的生命周期。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Comparative analysis of arterial compliance in mice genetically null for cathepsins K, L, or S.
- DOI:10.1016/j.jbiomech.2022.111266
- 发表时间:2022-08
- 期刊:
- 影响因子:2.4
- 作者:V. Omojola;Zaria Hardnett;Hannah W. Song;Hai Dong;D. J. Alexander;Adeola O Adebayo Michael;R. Gleason;M. Platt
- 通讯作者:V. Omojola;Zaria Hardnett;Hannah W. Song;Hai Dong;D. J. Alexander;Adeola O Adebayo Michael;R. Gleason;M. Platt
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Edward A. Botchwey其他文献
Edward A. Botchwey的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Edward A. Botchwey', 18)}}的其他基金
T32 CTEng (Cellular and Tissue Engineering) Training Program
T32 CTEng(细胞和组织工程)培训计划
- 批准号:
10641891 - 财政年份:2022
- 资助金额:
$ 56.41万 - 项目类别:
T32 CTEng (Cellular and Tissue Engineering) Training Program
T32 CTEng(细胞和组织工程)培训计划
- 批准号:
10420388 - 财政年份:2022
- 资助金额:
$ 56.41万 - 项目类别:
Artery biomechanics and vascular damage in sickle cell disease
镰状细胞病的动脉生物力学和血管损伤
- 批准号:
10390381 - 财政年份:2021
- 资助金额:
$ 56.41万 - 项目类别:
Regenerative Immunotherapy using light triggered in vivo activation of adhesive peptides
使用光触发体内粘附肽激活的再生免疫疗法
- 批准号:
10252435 - 财政年份:2020
- 资助金额:
$ 56.41万 - 项目类别:
Immune Modulatory Nanofibers for Skeletal Muscle Reconstruction
用于骨骼肌重建的免疫调节纳米纤维
- 批准号:
9565183 - 财政年份:2017
- 资助金额:
$ 56.41万 - 项目类别:
2015 Biomaterials & Tissue Engineering Gordon Research Conference and Gordon Research Seminar
2015年生物材料
- 批准号:
8986494 - 财政年份:2015
- 资助金额:
$ 56.41万 - 项目类别:
Therapeutic S1P Drug Targets for Cranial Bone Repair
颅骨修复的治疗性 S1P 药物靶点
- 批准号:
8069853 - 财政年份:2009
- 资助金额:
$ 56.41万 - 项目类别:
Therapeutic S1P Drug Targets for Cranial Bone Repair
颅骨修复的治疗性 S1P 药物靶点
- 批准号:
8543695 - 财政年份:2009
- 资助金额:
$ 56.41万 - 项目类别:
Phospholipid Growth Factors for Therapeutic Arteriogenesis and Tissue Engineering
用于治疗性动脉生成和组织工程的磷脂生长因子
- 批准号:
8895064 - 财政年份:2009
- 资助金额:
$ 56.41万 - 项目类别:
Therapeutic S1P Drug Targets for Cranial Bone Repair
颅骨修复的治疗性 S1P 药物靶点
- 批准号:
7728926 - 财政年份:2009
- 资助金额:
$ 56.41万 - 项目类别:
相似国自然基金
高功率激光驱动低β磁重联中磁岛对电子加速影响的研究
- 批准号:12305275
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
U型离散顺流火蔓延非稳态热输运机理与加速机制研究
- 批准号:52308532
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
NOTCH3/HLF信号轴驱动平滑肌细胞表型转化加速半月板退变的机制研究
- 批准号:82372435
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
TWIST1介导的ITGBL1+肿瘤相关成纤维细胞转化加速结肠癌动态演化进程机制及其预防干预研究
- 批准号:82373112
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
实施科学视角下食管癌加速康复外科证据转化障碍机制与多元靶向干预策略研究
- 批准号:82303925
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Preconception Maternal Nutrition, Offspring DNA Methylation, and Infant Growth in Low Resource Settings
资源匮乏环境下孕前孕产妇营养、后代 DNA 甲基化和婴儿生长
- 批准号:
10565003 - 财政年份:2023
- 资助金额:
$ 56.41万 - 项目类别:
Infant diet and cardiometabolic risk among children born preterm
早产儿的婴儿饮食和心脏代谢风险
- 批准号:
10716587 - 财政年份:2023
- 资助金额:
$ 56.41万 - 项目类别:
Loss of progenitor function accelerates lung aging
祖细胞功能丧失加速肺部衰老
- 批准号:
10579157 - 财政年份:2023
- 资助金额:
$ 56.41万 - 项目类别:
Promotion of Exclusive Breastfeeding in Children with Sickle Cell Disease for Improved Health Outcomes
促进镰状细胞病儿童纯母乳喂养以改善健康状况
- 批准号:
10693377 - 财政年份:2022
- 资助金额:
$ 56.41万 - 项目类别:
Multiplexed Antigen-Specific Antibody Fc Profiling on a Chip for Point-of-Care Diagnosis of TB in HIV-infected Children
芯片上的多重抗原特异性抗体 Fc 分析用于 HIV 感染儿童结核病的护理点诊断
- 批准号:
10614432 - 财政年份:2020
- 资助金额:
$ 56.41万 - 项目类别: