EXCESS: The role of excess topography and peak ground acceleration on earthquake-preconditioning of landslides

过量:过量地形和峰值地面加速度对滑坡地震预处理的作用

基本信息

  • 批准号:
    NE/Y000080/1
  • 负责人:
  • 金额:
    $ 99.24万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2024
  • 资助国家:
    英国
  • 起止时间:
    2024 至 无数据
  • 项目状态:
    未结题

项目摘要

Landsliding is a collective term for physical processes that cause rock and soil to fail and move down slope. Landslides occur when steep slopes are destabilised by factors such as heavy rainfall, earthquakes, the removal of the base of the slope by natural processes (e.g., by rivers) or by the action of people causing material on the hillside to collapse. Many thousands of landslides occur globally each year, killing thousands of people (e.g., from 2004 and 2016; 55,997 people died in 4,862 separate landslide events) and significantly damaging infrastructure, disrupting economies and hindering international development. Despite extensive research, the ability to forecast when and where a landslide will occur remains a fundamental scientific challenge. This is partly because scientists had thought that the rate of landsliding in a certain area is constant from year to year, and that landslides would occur in similar places in those landscapes. If this were the case, then it would be straightforward to understand where and when landslides would most likely occur, i.e., they would be 'predictable'. Unfortunately, recent research shows that such assumptions are incorrect and in fact sudden extreme events such as storms and earthquakes will change the rates and patterns of landsliding. Being able to predict areas of elevated landslide risk thus remains an imperative frontier in hazard management. Earthquakes not only induce landslides because of ground deformation and shaking during the event, but also after an earthquake there are increased numbers of subsequent landslides over the next 1-10 years - this process has been termed "earthquake-preconditioning". This phenomenon poses an additional hazard and risk that is largely unrecognised and unquantified. Our recent ground-breaking research in Nepal suggests that there is a link between the strength of an earthquake and excess topography (areas in the landscape that are above a stable threshold slope) and subsequent landsliding. If this relationship is true in other parts of the world, we will have a highly innovative way of locating areas at higher risk.This project will address this critical research frontier through the study of recent events and computer modelling. Firstly, we will create new landslide catalogues before, during and after recent large earthquakes for six different regions, using high-resolution (<5m) satellite imagery. These high-resolution data allow us to accurately determine the long-term average rate of landslide occurrence in each region and confidently identify the size and duration of periods of increased landsliding following an earthquake. The regions and earthquakes selected span a range of climates, tectonic settings, and earthquake sizes to enable us to investigate the influence, and determine the relative importance that different control factors (e.g., rainfall, slope, topography, earthquake size) have at a global level, ensuring that the research outputs have wide applicability. These datasets will then be used in landslide susceptibility models at regional level to form outputs that can be used in hazard and risk mitigation by national/regional governments and agencies. Secondly, we will develop a new process-based computer model to investigate the mechanism of earthquake landscape damage and how this changes through time to cause observed patterns of landslides. Unlike empirical statistical models, process-based models explicitly simulate the drivers of landslide occurrence and can consider the impact of sudden and rapid environmental changes. The results of the model will be validated by the susceptibility maps, and the ability to model multiple earthquakes over 10s to 1000s of years will lead to new insights into the role of earthquake-induced and earthquake-preconditioned landslides in long-term landscape evolution, ultimately increasing the ability to accurately forecast the location of landslides across earthquake cycles.
滑坡是导致岩石和土壤崩塌并向下移动的物理过程的统称。当陡峭的斜坡因强降雨、地震、自然过程(例如河流)移动斜坡底部或人类活动导致山坡上的物质崩塌等因素而不稳定时,就会发生山体滑坡。全球每年都会发生数千起山体滑坡,造成数千人死亡(例如,从 2004 年到 2016 年;4,862 起单独的山体滑坡事件导致 55,997 人死亡),并严重破坏基础设施、扰乱经济并阻碍国际发展。尽管进行了大量研究,预测山体滑坡发生时间和地点的能力仍然是一项基本的科学挑战。部分原因是科学家们认为某个地区的山体滑坡发生率每年都是恒定的,并且这些景观中的相似地方也会发生山体滑坡。如果是这种情况,那么就很容易理解山体滑坡最有可能发生的地点和时间,即它们是“可预测的”。不幸的是,最近的研究表明,这种假设是不正确的,事实上,风暴和地震等突发极端事件将改变山体滑坡的速度和模式。因此,能够预测滑坡风险较高的区域仍然是灾害管理的一个重要前沿领域。地震不仅会因地震过程中地面变形和晃动而引发山体滑坡,而且地震发生后,在接下来的1-10年内,后续山体滑坡的数量也会增加——这个过程被称为“地震预调节”。这种现象带来了额外的危害和风险,但这种危害和风险在很大程度上未被认识和量化。我们最近在尼泊尔进行的开创性研究表明,地震强度与过度地形(景观中高于稳定阈值坡度的区域)以及随后的滑坡之间存在联系。如果这种关系在世界其他地区也是如此,我们将有一种高度创新的方法来定位风险较高的地区。该项目将通过研究最近发生的事件和计算机建模来解决这一关键研究前沿问题。首先,我们将使用高分辨率(<5m)卫星图像为六个不同地区最近发生的大地震之前、期间和之后创建新的滑坡目录。这些高分辨率数据使我们能够准确确定每个地区滑坡发生的长期平均速率,并自信地确定地震后滑坡增加时期的规模和持续时间。所选的区域和地震涵盖了一系列气候、构造环境和地震规模,使我们能够调查其影响,并确定不同控制因素(例如降雨、坡度、地形、地震规模)在全球范围内的相对重要性。水平,确保研究成果具有广泛的适用性。然后,这些数据集将用于区域一级的滑坡敏感性模型,以形成可供国家/区域政府和机构用于减轻灾害和风险的输出。其次,我们将开发一种新的基于过程的计算机模型,以研究地震景观破坏的机制以及这种破坏如何随时间变化而导致观察到的山体滑坡模式。与经验统计模型不同,基于过程的模型明确模拟滑坡发生的驱动因素,并且可以考虑突然和快速的环境变化的影响。该模型的结果将通过磁化率图进行验证,并且对数十年至数千年的多次地震进行建模的能力将为地震诱发和地震预处理的滑坡在长期景观演化中的作用提供新的见解,最终提高准确预测地震周期内滑坡位置的能力。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Sarah Boulton其他文献

Sarah Boulton的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

基于可解释机器学习的科学知识角色转变预测研究
  • 批准号:
    72304108
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
骑墙守望还是全力奔赴:基于角色理论的混合创业进入、退出与长期回报研究
  • 批准号:
    72372119
  • 批准年份:
    2023
  • 资助金额:
    40 万元
  • 项目类别:
    面上项目
非宿主噬菌体在宿主噬菌体裂解水稻白叶枯病菌中的帮助角色及其自我牺牲机制研究
  • 批准号:
    32372614
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
喜忧参半:服务机器人角色对旅游企业员工幸福感的双路径影响机制研究
  • 批准号:
    72302099
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
旅游参与度差异视角下乡村妇女社会角色变迁、自我效能感及其关联机制研究
  • 批准号:
    72362010
  • 批准年份:
    2023
  • 资助金额:
    27 万元
  • 项目类别:
    地区科学基金项目

相似海外基金

Collaborative Research: A new pathway of Indonesian Throughflow in the Indian Ocean: Mechanisms and role in transporting the excess heat and freshwater of the recent hiatus decade
合作研究:印度洋印度尼西亚通流的新途径:近十年间的过剩热量和淡水输送机制和作用
  • 批准号:
    2242195
  • 财政年份:
    2023
  • 资助金额:
    $ 99.24万
  • 项目类别:
    Standard Grant
Stem Cell-Based Models for Elucidating Human Adrenocortical Development and Dysfunction
用于阐明人类肾上腺皮质发育和功能障碍的干细胞模型
  • 批准号:
    10735100
  • 财政年份:
    2023
  • 资助金额:
    $ 99.24万
  • 项目类别:
The impact of changes in social determinants of health on adolescent and young adult mental health during the COVID-19 pandemic: A longitudinal study of the Asenze cohort in South Africa
COVID-19 大流行期间健康社会决定因素的变化对青少年和年轻人心理健康的影响:南非 Asenze 队列的纵向研究
  • 批准号:
    10755168
  • 财政年份:
    2023
  • 资助金额:
    $ 99.24万
  • 项目类别:
Collaborative Research: A new pathway of Indonesian Throughflow in the Indian Ocean: Mechanisms and role in transporting the excess heat and freshwater of the recent hiatus decade
合作研究:印度洋印度尼西亚通流的新途径:近十年间的过剩热量和淡水输送机制和作用
  • 批准号:
    2242194
  • 财政年份:
    2023
  • 资助金额:
    $ 99.24万
  • 项目类别:
    Standard Grant
Food for thought: a virus-like signal for the energetic demands of higher cognitive functions
深思:一种类似病毒的信号,满足更高认知功能的能量需求
  • 批准号:
    10702143
  • 财政年份:
    2023
  • 资助金额:
    $ 99.24万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了