Statistical adjustments of sample representation in community-level estimates of COVID-19 transmission and immunity
社区层面 COVID-19 传播和免疫力估计中样本代表性的统计调整
基本信息
- 批准号:10600097
- 负责人:
- 金额:$ 56.21万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-04-01 至 2025-12-31
- 项目状态:未结题
- 来源:
- 关键词:2019-nCoVAmericanAntibodiesAreaAttentionBehaviorBlack raceCOVID testingCOVID-19 pandemicCOVID-19 patientCalibrationCommunitiesCommunity HospitalsCommunity SurveysDataData AnalysesData CollectionData SetData SourcesDiseaseDisparityElectronic Health RecordEpidemicEthnic OriginFoundationsFutureGeographyGovernmentGuidelinesHealthHealth behavior and outcomesHealthcareHospitalsImmunityIncidenceIndianaIndividualInequalityInterventionInvestigationKnowledgeLinkLocalesMeasuresMethodologyMethodsMonitorOutcomePathway interactionsPatientsPhasePoliciesPolicy MakerPopulationPrevalenceProceduresProxyPublic HealthRaceReportingReproducibilityResearchRuralSARS-CoV-2 exposureSARS-CoV-2 immunitySARS-CoV-2 transmissionSamplingSelection BiasSensitivity and SpecificitySeroprevalencesStatistical Data InterpretationStatistical MethodsStratificationSubgroupSystemTestingTimeVaccinationVaccinesVariantViralVirus DiseasesVulnerable PopulationsWorkacquired immunityclinical predictive modelclinical predictorscomorbiditycoronavirus diseasedata harmonizationdata integrationdemographicsfuture epidemichealth care service utilizationhealth disparitymemberpandemic diseaseresponserural settingscreeningseropositivesexsocialsocial determinantssocial disparitiessociodemographicssocioeconomicssuburbtrendvaccine accessviral transmissionweb based interfaceweb interface
项目摘要
Abstract
Throughout the COVID-19 pandemic, government policy and healthcare implementation responses have been
guided by reported positivity rates and vaccination rates in the community. The selection bias of these test
data questions their validity as measures of the actual viral incidence in the community and as predictors of
clinical burden. Publicly available vaccination data are frequently cited as a proxy for population immunity, but this
metric ignores the effects of naturally-acquired immunity. The health disparities concerning asymptomatic and
symptomatic patients are not yet studied. The proposal develops a valid metric to estimate the true viral incidence
and naturally/vaccine-acquired immunity prevalence in the community, examine the health disparities and social
inequality, and monitor the epidemic over time as an operational surveillance system. The approach collects
routine testing data on SARS-CoV-2 exposure and antibody seropositivity among patients in a hospital system
and performs statistical adjustments of sample representation using multilevel regression and poststratification
(MRP), which adjusts for measured differences between the sample and population and also yields stable small
area estimates. The data collection and analysis procedure can provide information to entire communities with
generalizability and focus on burdens within specific demographics, with close attention to vulnerable populations
on disparities across health outcomes, social determinants, and behaviors. In particular, the research will yield
group-specific estimates of disparities with respect to asymptomatic and symptomatic patients and how these
discrepancies may impact the socio-demographically dependent spread of disease and its subsequent treatment.
The MRP adjustment will be made publicly accessible via a web interface and promote broad investigations with
integrated data sources toward a national study.
抽象的
在整个 COVID-19 大流行期间,政府政策和医疗保健实施对策一直在
以社区报告的阳性率和疫苗接种率为指导,这些测试的选择偏差。
数据质疑它们作为社区实际病毒发病率的衡量标准和作为预测因素的有效性
公开的疫苗接种数据经常被引用作为人群免疫力的代表,但这
指标忽略了自然获得性免疫力的影响。
该提案尚未对有症状的患者进行研究,以制定有效的指标来估计真实的病毒发病率。
以及社区中自然/疫苗获得性免疫力的流行情况,检查健康差异和社会差异
该方法收集数据,并随着时间的推移监控流行病。
医院系统患者 SARS-CoV-2 暴露和抗体血清阳性的常规检测数据
并使用多级回归和后分层对样本表示进行统计调整
(MRP),它根据样本和总体之间的测量差异进行调整,并且还产生稳定的小
数据收集和分析程序可以为整个社区提供信息。
普遍性并关注特定人群的负担,并密切关注弱势群体
该研究将特别针对健康结果、社会决定因素和行为之间的差异进行研究。
对无症状和有症状患者的差异进行特定群体的估计,以及这些差异如何
差异可能会影响疾病的社会人口依赖性传播及其后续治疗。
MRP 调整将通过网络界面公开发布,并促进广泛调查
整合数据源进行全国性研究。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yajuan Si其他文献
Yajuan Si的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Yajuan Si', 18)}}的其他基金
Novel Approaches to Adjusting for Population Heterogeneity and Representation in Neuroimaging Studies
神经影像研究中调整群体异质性和代表性的新方法
- 批准号:
10400104 - 财政年份:2021
- 资助金额:
$ 56.21万 - 项目类别:
Novel Approaches to Adjusting for Population Heterogeneity and Representation in Neuroimaging Studies
神经影像研究中调整群体异质性和代表性的新方法
- 批准号:
10189007 - 财政年份:2021
- 资助金额:
$ 56.21万 - 项目类别:
Profiling missing data in electronic health records for diabetes care research
分析电子健康记录中缺失的数据以进行糖尿病护理研究
- 批准号:
9169147 - 财政年份:2016
- 资助金额:
$ 56.21万 - 项目类别:
相似海外基金
Immunologic and Clinical Sequelae after COVID-19 in Patients with Systemic Autoimmune Rheumatic Diseases
系统性自身免疫性风湿病患者 COVID-19 后的免疫学和临床后遗症
- 批准号:
10583192 - 财政年份:2023
- 资助金额:
$ 56.21万 - 项目类别:
Research Resources and Workforce Development for the Rocky Mountain Regional Biocontainment Laboratory at Colorado State University
科罗拉多州立大学落基山区域生物防护实验室的研究资源和劳动力发展
- 批准号:
10793907 - 财政年份:2023
- 资助金额:
$ 56.21万 - 项目类别:
COVID Transmission and Morbidity in Malawi (COVID-TMM)
马拉维的新冠病毒传播和发病率 (COVID-TMM)
- 批准号:
10467335 - 财政年份:2022
- 资助金额:
$ 56.21万 - 项目类别: