Natural Language Processing and Automated Speech Recognition to Identify Older Adults with Cognitive Impairment Supplement
自然语言处理和自动语音识别可识别患有认知障碍的老年人补充剂
基本信息
- 批准号:10599624
- 负责人:
- 金额:$ 34.8万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-04-15 至 2025-03-31
- 项目状态:未结题
- 来源:
- 关键词:AddressAdoptionArtificial IntelligenceBioethicsClinicalCollaborationsComputersDataData CollectionDevelopmentDisclosureElderlyEthical IssuesEthicsFocus GroupsHealth TechnologyHealthcareImpaired cognitionInformed ConsentInterviewKnowledgeLiteratureMethodsMinority GroupsNatural Language ProcessingOutpatientsPaperParentsPatient CarePatientsPerceptionPhysiciansPrimary Health CarePublicationsQualitative MethodsResearchResearch EthicsScientistTechniquesUnderrepresented MinorityUnderrepresented PopulationsWorkautomated speech recognitionclinical carehealth care settingshealth disparityinsightminority healthminority patientmultidisciplinaryscreeningstakeholder perspectivestool
项目摘要
Existing ethical frameworks for the study and or development of artificial intelligence (AI) technology for health
care applications are largely conceptual, lacking critical insights from patients and clinicians, including patients
from racial and ethic minority groups. Building on the Parent Study (R01 AG066471), which is developing
automated techniques for cognitive impairment screening in primary care, we plan to use qualitative methods to
collect perspectives from diverse patient groups, and from physicians, and integrate these data with concepts
and data from the literature on ethical challenges of AI research in healthcare. While the Parent Study is specific
to cognitive impairment screening, we anticipate that the activities of this project will generate a framework with
broader applications. The proposed project harnesses a collaboration of a multi-disciplinary team of clinicians,
computer scientists, experts in minority health, and bioethics. The specific aims are (1) to identify and
characterize the perceptions and concerns of patients, including those from underrepresented minority groups,
and clinicians about AI methods for automated screening for cognitive impairment in outpatient clinical settings;
and (2) to integrate this knowledge with existing ethical frameworks of AI research and healthcare screening to
develop a more comprehensive ethical framework for the ethical conduct of AI research in healthcare settings.
We will first integrate several established ethical frameworks on AI research and healthcare screening and use
the resultant preliminary framework to inform qualitative data collection. Next, we will conduct qualitative
interviews with patients from diverse backgrounds to understand their perspectives on automated screening and
AI research in clinical care (e.g., informed consent, disclosure of results), and focus groups with clinicians for
their views on ethical challenges that could hinder adoption. In parallel, we will conduct a PRISMA-Scoping
review to identify additional relevant frameworks and research, and interactively refine our qualitative data
collection. Finally, we will integrate the qualitative data with concepts from existing literature and frameworks to
establish a more comprehensive and inclusive framework than those currently in publication. In this fashion, the
work will inform the ethical conduct of research on AI-driven automated cognitive impairment screening and AI
research for other conditions. This supplement is responsive to NOT-OD-22-065 by supporting a new
collaboration on AI research ethics and developing generalizable methods of exploring and addressing ethical
impacts throughout the AI research cycle, specifically through advancing AI research ethical frameworks.
研究和/或开发健康人工智能 (AI) 技术的现有伦理框架
护理应用程序很大程度上是概念性的,缺乏患者和临床医生(包括患者)的批判性见解
来自种族和族裔少数群体。以家长研究 (R01 AG066471) 为基础,该研究正在开发中
初级保健中认知障碍筛查的自动化技术,我们计划使用定性方法
收集不同患者群体和医生的观点,并将这些数据与概念相结合
以及有关医疗保健领域人工智能研究的伦理挑战的文献数据。虽然家长研究是具体的
对于认知障碍筛查,我们预计该项目的活动将生成一个框架
更广泛的应用。拟议的项目利用了多学科临床医生团队的合作,
计算机科学家、少数民族健康和生物伦理学专家。具体目标是 (1) 确定和
描述患者的看法和担忧,包括来自代表性不足的少数群体的患者,
和临床医生了解门诊临床环境中自动筛查认知障碍的人工智能方法;
(2) 将这些知识与人工智能研究和医疗保健筛查的现有道德框架相结合,以
为医疗保健环境中人工智能研究的道德行为制定更全面的道德框架。
我们将首先整合几个已建立的人工智能研究和医疗保健筛查和使用的道德框架
由此产生的初步框架为定性数据收集提供信息。接下来我们将进行定性
采访来自不同背景的患者,了解他们对自动筛查的看法
临床护理中的人工智能研究(例如知情同意、结果披露)以及临床医生的焦点小组
他们对可能阻碍采用的道德挑战的看法。与此同时,我们将进行 PRISMA-Scoping
审查以确定其他相关框架和研究,并交互式地完善我们的定性数据
收藏。最后,我们将定性数据与现有文献和框架中的概念相结合
建立比目前出版的框架更全面、更具包容性的框架。以这种方式,
这项工作将为人工智能驱动的自动认知障碍筛查和人工智能研究的道德行为提供信息
研究其他条件。该补充通过支持新的 NOT-OD-22-065 来响应
人工智能研究伦理方面的合作,并开发探索和解决伦理问题的通用方法
影响整个人工智能研究周期,特别是通过推进人工智能研究伦理框架。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jalayne J Arias其他文献
Direct to Consumer Biomarker Testing for Alzheimer Disease-Are We Ready for the Insurance Consequences?
直接针对阿尔茨海默病的消费者生物标志物测试——我们准备好承受保险后果了吗?
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:29
- 作者:
Jalayne J Arias;Margaret Manchester;James J Lah - 通讯作者:
James J Lah
Jalayne J Arias的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jalayne J Arias', 18)}}的其他基金
Identifying barriers to optimizing data sharing and accelerate discovery in Alzheimer’s disease and related dementia research
识别优化数据共享和加速阿尔茨海默病及相关痴呆症研究发现的障碍
- 批准号:
10568214 - 财政年份:2023
- 资助金额:
$ 34.8万 - 项目类别:
Employment and Insurance Discrimination Based on Biomarkers for Alzheimer's disease
基于阿尔茨海默病生物标志物的就业和保险歧视
- 批准号:
9767001 - 财政年份:2018
- 资助金额:
$ 34.8万 - 项目类别:
Employment and Insurance Discrimination Based on Biomarkers for Alzheimer's disease
基于阿尔茨海默病生物标志物的就业和保险歧视
- 批准号:
10202469 - 财政年份:2018
- 资助金额:
$ 34.8万 - 项目类别:
Employment and Insurance Discrimination Based on Biomarkers for Alzheimer's disease
基于阿尔茨海默病生物标志物的就业和保险歧视
- 批准号:
10544869 - 财政年份:2018
- 资助金额:
$ 34.8万 - 项目类别:
相似国自然基金
采用积分投影模型解析克隆生长对加拿大一枝黄花种群动态的影响
- 批准号:32301322
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
政策激励、信息传递与农户屋顶光伏技术采用提升机制研究
- 批准号:72304103
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
山丘区农户生计分化对水保措施采用的影响及其调控对策
- 批准号:42377321
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
金属有机骨架材料在环境VOCs处理过程中采用原位电子顺磁共振自旋探针检测方法的研究
- 批准号:22376147
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
采用新型视觉-电刺激配对范式长期、特异性改变成年期动物视觉系统功能可塑性
- 批准号:32371047
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
Bioethical, Legal, and Anthropological Study of Technologies (BLAST)
技术的生物伦理、法律和人类学研究 (BLAST)
- 批准号:
10831226 - 财政年份:2023
- 资助金额:
$ 34.8万 - 项目类别:
Discovering clinical endpoints of toxicity via graph machine learning and semantic data analysis
通过图机器学习和语义数据分析发现毒性的临床终点
- 批准号:
10745593 - 财政年份:2023
- 资助金额:
$ 34.8万 - 项目类别:
Expanding Access to Care for Marginalized Caregivers through Innovative Methods for Multicultural and Multilingual Adaptation of AI-Based Health Technologies
通过基于人工智能的医疗技术的多文化和多语言适应创新方法,扩大边缘化护理人员获得护理的机会
- 批准号:
10741177 - 财政年份:2023
- 资助金额:
$ 34.8万 - 项目类别:
3D force sensing insoles for wearable, AI empowered, high-fidelity gait monitoring
3D 力传感鞋垫,用于可穿戴、人工智能支持的高保真步态监控
- 批准号:
10688715 - 财政年份:2023
- 资助金额:
$ 34.8万 - 项目类别: