Cell and Network Disruptions and Associated Pathogenenesis in Tauopathy and Down Syndrome
Tau 蛋白病和唐氏综合症的细胞和网络破坏及相关发病机制
基本信息
- 批准号:10599756
- 负责人:
- 金额:$ 37.8万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-04-15 至 2025-03-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
PROJECT SUMMARY
Our studies will develop and implement novel artificial intelligence (AI)/ machine learning (ML) technologies to
reduce experimental unethical bias in analysis of imaging data of our studies in our parent, NIH-funded grant
(AG064579-02) that focuses on identifying mechanisms of neurodegeneration in Alzheimer’s disease and
Frontotemporal dementia. We study neurodegeneration in human iPSC-derived neurons (i-neurons) of controls
and patients with tauopathies in 3-dimensional (3D) human brain organoids and use robotic microscopy (RM) to
monitor changes in morphology and structure of individual i-neurons in large populations of heterogeneous cells
over time as an indicator of neurodegeneration. Since the initiation of this grant, we have developed novel
approaches to study mechanisms of neurodegeneration with a unique biosensor (Genetically encoded cell death
indicator – GEDI) that acutely identifies living neurons at a stage at which they are irreversibly committed to die.
Initially, imaging data from these studies involved human curation, which carries some degree of experimental
bias that can cause ethical problems in interpretation of data. To reduce experimental bias of our data analysis,
we have developed ML and deep neural networks (DNN) and use a subclass of DNN, convolutional neural
networks (CNNs) which have mathematical properties particularly adept at Computer Vision. We have developed
deep learning (DL) algorithms for detecting neuronal death by constructing a novel quantitative RM pipeline that
automatically generates GEDI-curated data to train a CNN without human input. The resulting GEDI-CNN
detects neuronal death from images of morphology alone, alleviating the need for any additional use of GEDI in
subsequent experiments. Through systematic analysis of a trained GEDI-CNN, we find that it learns to detect
death in neurons by locating morphology linked to death, despite receiving no explicit supervision toward these
features. Uniquely, it detects cell death as a change in nuclear readouts as well as other cellular features, which
human curation can’t easily identify. We also show that this model generalizes to images captured with different
parameters or displays of neurons and cell types from different species without additional training. The advances
we made in unbiased AI image analysis are not restricted to our benefit but will be applicable to a large range of
ML based imaging studies of other investigators because it focuses on improving how the CNN algorithms are
trained to analyze data without the need of humans but with super-human accuracy. In this supplemental
application, we will further develop this novel ethical AI technology for studies on neurodegeneration of human
i-neurons in 3D brain organoids using GEDI-CNN. We will refine the CNN algorithms to optimize and standardize
its widespread use in ethical analysis of live imaging analysis and provide the technology to the scientific
community for AI-based imaging research.
项目摘要
我们的研究将开发和实施新颖的人工智能(AI)/机器学习(ML)技术
在父母的研究中,减少实验性不道德偏见,分析我们的研究的成像数据,NIH资助的赠款
(AG064579-02)专注于识别阿尔茨海默氏病和
额颞痴呆。我们研究对照人IPSC衍生的神经元(I-神经元)的神经变性
三维(3D)人脑器官中有扭曲的患者,并使用机器人显微镜(RM)
监测大量异质细胞中单个I-神经元的形态和结构的变化
随着时间的流逝,作为神经变性的指标。自从这笔赠款的倡议以来,我们已经开发了小说
使用独特的生物传感器研究神经退行性的机制(遗传编码的细胞死亡)
指标 - Gedi)在不可逆地致力于死亡的阶段急性地识别活神经元。
最初,来自这些研究的成像数据涉及人类策划,该研究具有一定程度的实验
可能在数据解释时引起道德问题的偏见。为了减少我们数据分析的实验偏见,
我们已经开发了ML和深度神经网络(DNN),并使用DNN的子类卷积神经
具有数学属性的网络(CNN)尤其熟悉计算机视觉。我们已经发展了
通过构建一种新型的定量RM管道来检测神经元死亡的深度学习(DL)算法
自动生成GEDI策划的数据,以训练无人输入的CNN。由此产生的Gedi-CNN
从单独形态的图像中检测神经元死亡,从而减轻了GEDI在
随后的实验。通过对受过训练的Gedi-CNN的系统分析,我们发现它学会了检测
通过找到与死亡有关的形态,目的地没有明确监督的神经元死亡
独特地,它检测到细胞死亡是核读数的变化以及其他细胞特征,
人类策划无法轻易识别。我们还表明,该模型概括为用不同的图像
来自不同物种的神经元和细胞类型的参数或显示,而无需其他训练。进步
我们以公正的AI图像分析制作不限于我们的利益,但将适用于大量
基于ML的其他研究者的成像研究,因为它重点是改善CNN算法的方式
经过培训,可以分析数据而无需人类,但具有超人的准确性。在这个补充中
应用,我们将进一步开发这种新型的道德AI技术来研究人类神经退行性的研究
使用GEDI-CNN中的3D脑器官中的I-神经元。我们将完善CNN算法以优化和标准化
它在实时成像分析的道德分析中的广泛使用,并为科学提供技术
基于AI的成像研究的社区。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

暂无数据
数据更新时间:2024-06-01
STEVEN M FINKBEINE...的其他基金
Image Tools for Computational Cellular Barcoding and Automated Annotation
用于计算细胞条形码和自动注释的图像工具
- 批准号:1055263810552638
- 财政年份:2022
- 资助金额:$ 37.8万$ 37.8万
- 项目类别:
Image Tools for Computational Cellular Barcoding and Automated Annotation
用于计算细胞条形码和自动注释的图像工具
- 批准号:1036787410367874
- 财政年份:2022
- 资助金额:$ 37.8万$ 37.8万
- 项目类别:
Role of central and peripheral immune crosstalk in FTD-Grn neurodegeneration
中枢和外周免疫串扰在 FTD-Grn 神经变性中的作用
- 批准号:1051426310514263
- 财政年份:2022
- 资助金额:$ 37.8万$ 37.8万
- 项目类别:
Cell and Network Disruptions and Associated Pathogenenesis in Tauopathy and Down Syndrome
Tau 蛋白病和唐氏综合症的细胞和网络破坏及相关发病机制
- 批准号:99743199974319
- 财政年份:2020
- 资助金额:$ 37.8万$ 37.8万
- 项目类别:
Cell and Network Disruptions and Associated Pathogenenesis in Tauopathy and Down Syndrome
Tau 蛋白病和唐氏综合症的细胞和网络破坏及相关发病机制
- 批准号:1037748610377486
- 财政年份:2020
- 资助金额:$ 37.8万$ 37.8万
- 项目类别:
Cell and Network Disruptions and Associated Pathogenenesis in Tauopathy and Down Syndrome
Tau 蛋白病和唐氏综合症的细胞和网络破坏及相关发病机制
- 批准号:1060103510601035
- 财政年份:2020
- 资助金额:$ 37.8万$ 37.8万
- 项目类别:
Understanding the molecular mechanisms that contribute to neuropsychiatric symptoms in Alzheimer Disease
了解导致阿尔茨海默病神经精神症状的分子机制
- 批准号:1040670710406707
- 财政年份:2019
- 资助金额:$ 37.8万$ 37.8万
- 项目类别:
Understanding the molecular mechanisms that contribute to neuropsychiatric symptoms in Alzheimer Disease
了解导致阿尔茨海默病神经精神症状的分子机制
- 批准号:1065175710651757
- 财政年份:2019
- 资助金额:$ 37.8万$ 37.8万
- 项目类别:
Understanding the molecular mechanisms that contribute to neuropsychiatric symptoms in Alzheimer Disease
了解导致阿尔茨海默病神经精神症状的分子机制
- 批准号:1043925510439255
- 财政年份:2019
- 资助金额:$ 37.8万$ 37.8万
- 项目类别:
Understanding the molecular mechanisms that contribute to neuropsychiatric symptoms in Alzheimer Disease
了解导致阿尔茨海默病神经精神症状的分子机制
- 批准号:1045077110450771
- 财政年份:2019
- 资助金额:$ 37.8万$ 37.8万
- 项目类别:
相似国自然基金
SGO2/MAD2互作调控肝祖细胞的细胞周期再进入影响急性肝衰竭肝再生的机制研究
- 批准号:82300697
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
SSRP1/Sp-1转录调控的MFGE8通过SIRT6影响铁死亡在脓毒症急性肾损伤中的机制研究
- 批准号:82302418
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
人群mtDNA空间异质性对急性高原反应发病的影响机制研究
- 批准号:42377466
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
蜗牛粘液糖胺聚糖影响中性粒细胞粘附和迁移在治疗急性呼吸窘迫综合征中的作用研究
- 批准号:82360025
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
高甘油三酯通过TLR4/caspase-8影响急性胰腺炎CD4+T细胞程序性死亡的机制研究
- 批准号:82360135
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
相似海外基金
Targeting Menin in Acute Leukemia with Upregulated HOX Genes
通过上调 HOX 基因靶向急性白血病中的 Menin
- 批准号:1065516210655162
- 财政年份:2023
- 资助金额:$ 37.8万$ 37.8万
- 项目类别:
Changes in apical cochlear mechanics after cochlear implantation
人工耳蜗植入后耳蜗顶端力学的变化
- 批准号:1073098110730981
- 财政年份:2023
- 资助金额:$ 37.8万$ 37.8万
- 项目类别:
Understanding Chirality at Cell-Cell Junctions With Microscale Platforms
利用微型平台了解细胞与细胞连接处的手性
- 批准号:1058762710587627
- 财政年份:2023
- 资助金额:$ 37.8万$ 37.8万
- 项目类别:
Pericyte reprogramming in fibrosis
纤维化中的周细胞重编程
- 批准号:1057852610578526
- 财政年份:2023
- 资助金额:$ 37.8万$ 37.8万
- 项目类别:
Mitochondrial Calcium and Neuronal Health
线粒体钙和神经元健康
- 批准号:1063886910638869
- 财政年份:2023
- 资助金额:$ 37.8万$ 37.8万
- 项目类别: