Understanding the molecular mechanisms that contribute to neuropsychiatric symptoms in Alzheimer Disease

了解导致阿尔茨海默病神经精神症状的分子机制

基本信息

项目摘要

PROJECT SUMMARY Alzheimer's disease (AD) is a devastating neurodegenerative disease that affects 6.2M Americans, yet current therapies are not effective at preventing or slowing the cognitive decline1. Neuropsychiatric symptoms (NPS) are core features of AD and related dementias that are associated with major adverse effects on daily function and quality of life, and accelerate time to institutionalization. The overarching goal of the parent grant R01AG067025 is to integrate single nucleus transcriptome profiles with detailed NPS phenotype data from each donor and identify dysregulated genes associated with disease trajectory, identify clusters of donors with different gene expression disease signatures, and nominate genes and pathways for targeting with novel therapeutics. The compendium of single nucleus transcriptome profiles comprising ~7.2M nuclei from ~1,800 total donors generated by the parent grant R01AG067025 is a remarkable resource. Yet mining these transcriptome profiles to advance knowledge of AD etiology requires analytical workflows that scale to the unprecedented size of these and other emerging data. Existing workflows for multi-donor single cell and nucleus transcriptome data have either been 1) designed for a small number of donors and so cannot take advantage of the large-scale and complex study design used here, or 2) adapted from bulk transcriptome analyses and do not currently scale to hundreds of donors, dozens of cell types and millions of cells. The objective of addressing pressing biological hypotheses about AD biology necessitates the development of analytical workflows designed and engineered with the challenges of multi-donor single cell and nucleus transcriptome data in mind. In this Supplement, we propose developing a scalable, open source analytical workflow for multi-donor single cell/nucleus transcriptome data motivated by our previous work on linear mixed models2,3. We have previously applied linear mixed models to analyze bulk transcriptome profiles, and developed the open source variancePartition package to perform differential expression testing, account for technical batch effects and characterize the multiple biological and technical sources of expression variation. While the current software has facilitated analysis of bulk transcriptomic and epigenomic profiles by our group and many others, applying it to the multi-donor single nucleus data is currently limited by the ad hoc design of the variancePartition codebase. To address these limitations, here we propose (Aim 1) Scaling this analytical workflow to emerging datasets using best practices in software engineering, code refactoring, and empirical testing across multiple computing environments; and (Aim 2) Enabling broader use by (a) computational biologists by developing vignettes to illustrate applications of the software on public datasets, and by (b) open source developers by improving code design and documentation. Overall, reconceiving the analytical workflow of variancePartition will enable the powerful linear mixed model approach to scale to multi-donor single cell and nucleus transcriptome datasets in order to address questions about the etiology of AD and serve as an open source tool for the broader community.
项目摘要 阿尔茨海默氏病(AD)是一种毁灭性的神经退行性疾病,影响了620万美国人,但目前 疗法无效预防或减慢认知能力下降1。神经精神症状(NP)为 AD和相关痴呆症的核心特征与对日常功能的主要不利影响相关 生活质量,并加速时间制度化。父母授予R01AG067025的总体目标 是将单个核转录组曲线与每个供体的详细NP表型数据整合在一起 鉴定与疾病轨迹相关的基因失调,鉴定具有不同基因的供体的簇 表达疾病特征,并提名使用新型治疗剂靶向基因和途径。 来自约1,800个供体的单核转录组轮廓的纲要 由父授予R01AG067025生成的是一个非凡的资源。但是挖掘这些转录组轮廓 为了促进对AD病因的了解,需要分析工作流程,以扩展到这些规模 和其他新兴数据。现有的多符谱单单元和核转录组数据的工作流程已有 要么是1)专为少数捐助者而设计的,因此无法利用大规模和 此处使用的复杂研究设计,或2)根据批量转录组分析进行了改编,目前不扩展到 数百个供体,数十种细胞类型和数百万个细胞。解决压力生物学的目的 关于AD生物学的假设需要开发设计和设计的分析工作流程 考虑到多主单元和核转录组数据的挑战。 在此补充中,我们建议为多符合单一的单个单一开发可扩展的开源分析工作流程 细胞/核转录组数据由我们先前在线性混合模型上的工作动机2,3。我们以前有 应用线性混合模型来分析批量转录组轮廓,并开发了开源 方差分配包进行差分表达测试,说明技术批处理效果和 表征表达变化的多种生物学和技术来源。当前软件 我们小组和其他许多人都促进了对批量转录组和表观基因组概况的分析,并应用了它 当前,对于多主核单核数据,可受到方差分配代码库的临时设计的限制。 为了解决这些限制,我们在这里提出(AIM 1)将此分析工作流程缩放到新兴数据集 在多个计算中使用软件工程,代码重构和经验测试中的最佳实践 环境; (目标2)(A)通过开发小插曲来实现(a)计算生物学家的广泛使用 通过改进代码来说明该软件在公共数据集中的应用程序,以及(b)开源开发人员 设计和文档。总体而言,重新考虑方差分配的分析工作流程将使 强大的线性混合模型方法以扩展到多符谱单单元和核转录组数据集 为了解决有关AD病因的问题,并作为更广泛社区的开源工具。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

暂无数据

数据更新时间:2024-06-01

STEVEN M FINKBEINE...的其他基金

Image Tools for Computational Cellular Barcoding and Automated Annotation
用于计算细胞条形码和自动注释的图像工具
  • 批准号:
    10552638
    10552638
  • 财政年份:
    2022
  • 资助金额:
    $ 25.38万
    $ 25.38万
  • 项目类别:
Image Tools for Computational Cellular Barcoding and Automated Annotation
用于计算细胞条形码和自动注释的图像工具
  • 批准号:
    10367874
    10367874
  • 财政年份:
    2022
  • 资助金额:
    $ 25.38万
    $ 25.38万
  • 项目类别:
Role of central and peripheral immune crosstalk in FTD-Grn neurodegeneration
中枢和外周免疫串扰在 FTD-Grn 神经变性中的作用
  • 批准号:
    10514263
    10514263
  • 财政年份:
    2022
  • 资助金额:
    $ 25.38万
    $ 25.38万
  • 项目类别:
Cell and Network Disruptions and Associated Pathogenenesis in Tauopathy and Down Syndrome
Tau 蛋白病和唐氏综合症的细胞和网络破坏及相关发病机制
  • 批准号:
    9974319
    9974319
  • 财政年份:
    2020
  • 资助金额:
    $ 25.38万
    $ 25.38万
  • 项目类别:
Cell and Network Disruptions and Associated Pathogenenesis in Tauopathy and Down Syndrome
Tau 蛋白病和唐氏综合症的细胞和网络破坏及相关发病机制
  • 批准号:
    10377486
    10377486
  • 财政年份:
    2020
  • 资助金额:
    $ 25.38万
    $ 25.38万
  • 项目类别:
Cell and Network Disruptions and Associated Pathogenenesis in Tauopathy and Down Syndrome
Tau 蛋白病和唐氏综合症的细胞和网络破坏及相关发病机制
  • 批准号:
    10601035
    10601035
  • 财政年份:
    2020
  • 资助金额:
    $ 25.38万
    $ 25.38万
  • 项目类别:
Cell and Network Disruptions and Associated Pathogenenesis in Tauopathy and Down Syndrome
Tau 蛋白病和唐氏综合症的细胞和网络破坏及相关发病机制
  • 批准号:
    10599756
    10599756
  • 财政年份:
    2020
  • 资助金额:
    $ 25.38万
    $ 25.38万
  • 项目类别:
Understanding the molecular mechanisms that contribute to neuropsychiatric symptoms in Alzheimer Disease
了解导致阿尔茨海默病神经精神症状的分子机制
  • 批准号:
    10651757
    10651757
  • 财政年份:
    2019
  • 资助金额:
    $ 25.38万
    $ 25.38万
  • 项目类别:
Understanding the molecular mechanisms that contribute to neuropsychiatric symptoms in Alzheimer Disease
了解导致阿尔茨海默病神经精神症状的分子机制
  • 批准号:
    10439255
    10439255
  • 财政年份:
    2019
  • 资助金额:
    $ 25.38万
    $ 25.38万
  • 项目类别:
Understanding the molecular mechanisms that contribute to neuropsychiatric symptoms in Alzheimer Disease
了解导致阿尔茨海默病神经精神症状的分子机制
  • 批准号:
    10450771
    10450771
  • 财政年份:
    2019
  • 资助金额:
    $ 25.38万
    $ 25.38万
  • 项目类别:

相似国自然基金

基因与家庭不利环境影响儿童反社会行为的表观遗传机制:一项追踪研究
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    58 万元
  • 项目类别:
    面上项目
不利地质结构对地下洞室群围岩地震响应影响研究
  • 批准号:
    51009131
  • 批准年份:
    2010
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目
列车制动力对铁路桥梁的作用机理及最不利影响的研究
  • 批准号:
    50178004
  • 批准年份:
    2001
  • 资助金额:
    23.0 万元
  • 项目类别:
    面上项目

相似海外基金

Executive functions in urban Hispanic/Latino youth: exposure to mixture of arsenic and pesticides during childhood
城市西班牙裔/拉丁裔青年的执行功能:童年时期接触砷和农药的混合物
  • 批准号:
    10751106
    10751106
  • 财政年份:
    2024
  • 资助金额:
    $ 25.38万
    $ 25.38万
  • 项目类别:
Developing and Evaluating a Positive Valence Treatment for Alcohol Use Disorder with Anxiety or Depression
开发和评估治疗伴有焦虑或抑郁的酒精使用障碍的正价疗法
  • 批准号:
    10596013
    10596013
  • 财政年份:
    2023
  • 资助金额:
    $ 25.38万
    $ 25.38万
  • 项目类别:
Nursing homes' visitation bans during the COVID-19 pandemic: Effectiveness and consequences.
COVID-19 大流行期间疗养院的探视禁令:有效性和后果。
  • 批准号:
    10635829
    10635829
  • 财政年份:
    2023
  • 资助金额:
    $ 25.38万
    $ 25.38万
  • 项目类别:
Targeting Alcohol-Opioid Co-Use Among Young Adults Using a Novel MHealth Intervention
使用新型 MHealth 干预措施针对年轻人中酒精与阿片类药物的同时使用
  • 批准号:
    10456380
    10456380
  • 财政年份:
    2023
  • 资助金额:
    $ 25.38万
    $ 25.38万
  • 项目类别:
Development of a digital therapeutic targeting anxiety sensitivity to reduce PTSD-SUD in women presenting for emergency care after sexual assault.
开发一种针对焦虑敏感性的数字疗法,以减少性侵犯后寻求紧急护理的女性的 PTSD-SUD。
  • 批准号:
    10449766
    10449766
  • 财政年份:
    2023
  • 资助金额:
    $ 25.38万
    $ 25.38万
  • 项目类别: