Changes in apical cochlear mechanics after cochlear implantation

人工耳蜗植入后耳蜗顶端力学的变化

基本信息

项目摘要

Project Summary Sound entering the cochlea induces a longitudinally propagating travelling wave along the cochlear partition which includes the organ of Corti. The organ of Corti amplifies travelling waves via force production by outer hair cells. Where this amplification is lost, an array of electrodes called a cochlear implant replaces sound stimulation with electrical stimulation of the auditory nerve. Improved cochlear implants combine electrical and sound stimulation in patients with some intact hearing. These combined implants lead to improved performance. However, approximately half of combined cochlear implant recipients experience a loss of their remaining hearing months after implantation. This implantation-induced hearing loss reduces speech recognition and musicality. Implantation-induced hearing loss may have multiple interacting causes; immune, metabolic, and mechanical. We hypothesize that cochlear scarring (fibrosis/ossification) induced by implantation disrupts travelling wave propagation to the site of low frequency hearing. Links between hearing loss and implant-induced scarring are seen in rodent models, reflecting clinical findings. However, there are no direct measurements of the mechanical consequences of cochlear implantation for low frequency hearing. We will combine our expertise with rodent models of cochlear implantation and the use of the latest generation of imaging interferometry – optical coherence tomography (OCT). In a bid to produce the first data of its kind, we will use OCT vibrometry to characterize low frequency mechanical function in the cochlear apex of chronically implanted animals. We will then produce a 3D map of the scarring inside each cochlea using OCT imaging. Coupled with histology and machine learning powered image analysis, we will compare the extent, location and type of scarring with organ of Corti gain, tuning, distortion, phase and group delay in each cochlea. The results of our OCT vibrometry experiments will be interpreted by computer models of cochlear function. Experiments will also be conducted in acutely implanted models to assess the effect of the cochlear implant upon apical mechanics prior to scarring. Additionally, we will use a model with noise induced hearing loss prior to implantation to test the contribution of high frequency outer hair cells to low frequency hearing performance. Our multidisciplinary team will offer a direct insight into cochlear implant-induced hearing loss and will allow us to test the scarring hypothesis. This project will guide avenues of research geared towards minimizing or preventing cochlear implant-induced hearing loss, and lead to improved quality of life for the recipients of cochlear implants.
项目概要 进入耳蜗的声音会引起沿着耳蜗间隔纵向传播的行波 其中包括柯蒂氏器 柯蒂氏器通过外毛产生的力来放大行波。 当这种放大作用消失时,称为人工耳蜗的电极阵列会取代声音刺激。 改进的耳蜗植入物结合了电和声音。 这些组合植入物可以改善听力正常的患者的听力。 然而,大约一半的联合人工耳蜗植入者经历了剩余的听力丧失 植入后几个月的听力损失会降低语音识别能力和听力。 音乐性。 植入引起的听力损失可能有多种相互作用的原因:免疫、代谢和机械。 我们寻求植入引起的耳蜗疤痕(纤维化/骨化)会扰乱行波 传播到低频听力部位 听力损失和植入物引起的疤痕之间存在联系。 在啮齿动物模型中观察到,反映了临床发现,但是,没有直接的机械测量。 人工耳蜗植入对低频听力的影响。 我们将把我们的专业知识与人工耳蜗植入的啮齿动物模型和最新一代的使用相结合 成像干涉测量技术——光学相干断层扫描 (OCT) 为了产生第一个此类数据。 将使用 OCT 振动测量来表征慢性耳蜗尖部的低频机械功能 然后,我们将使用 OCT 成像生成每个耳蜗内疤痕的 3D 图。 结合组织学和机器学习驱动的图像分析,我们将比较范围、位置和 每个耳蜗的柯蒂氏器增益、调谐、失真、相位和群延迟的疤痕类型。 我们的 OCT 振动测量实验将通过耳蜗功能实验的计算机模型进行解释。 在急性植入模型中进行,以评估人工耳蜗对心尖力学的影响 此外,我们将在植入前使用噪声引起的听力损失模型来测试。 高频外毛细胞对低频听力性能的贡献。 我们的多学科团队将直接洞察人工耳蜗引起的听力损失,并使我们能够 测试疤痕假说,该项目将指导旨在最小化或减少疤痕的研究途径。 预防人工耳蜗引起的听力损失,并提高接受者的生活质量 人工耳蜗。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

George William Strathdee Burwood其他文献

George William Strathdee Burwood的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

Timm8A突变下调aralar1蛋白致听神经病耳聋机制及治疗方法研究
  • 批准号:
    32371044
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
改良迷路入路听神经瘤切除术关键技术与耳蜗纤维化影响因素及其机制研究
  • 批准号:
    82371136
  • 批准年份:
    2023
  • 资助金额:
    73 万元
  • 项目类别:
    面上项目
由胶质样支持细胞特异表达基因突变致听神经病谱系障碍的新机制研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    52 万元
  • 项目类别:
    面上项目
Wnt信号通路促进耳蜗Frizzled10阳性神经干细胞再生听神经元的研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
β2微球蛋白触发核转录因子-κB调控听神经瘤生长的机制研究
  • 批准号:
    82273035
  • 批准年份:
    2022
  • 资助金额:
    52 万元
  • 项目类别:
    面上项目

相似海外基金

Improving Cochlear Implant Outcomes Through Modeling and Programming Strategies Based on Human Inner Ear Pathology
通过基于人类内耳病理学的建模和编程策略改善人工耳蜗的效果
  • 批准号:
    10825043
  • 财政年份:
    2023
  • 资助金额:
    $ 19.25万
  • 项目类别:
Enhanced auditory prosthesis using a penetrating auditory-nerve electrode
使用穿透性听觉神经电极的增强型听觉假体
  • 批准号:
    10599903
  • 财政年份:
    2019
  • 资助金额:
    $ 19.25万
  • 项目类别:
Enhanced auditory prosthesis using a penetrating auditory-nerve electrode
使用穿透性听觉神经电极的增强型听觉假体
  • 批准号:
    10375480
  • 财政年份:
    2019
  • 资助金额:
    $ 19.25万
  • 项目类别:
Biodegradable Piezoelectric Scaffold for Bone regeneration
用于骨再生的可生物降解压电支架
  • 批准号:
    9913470
  • 财政年份:
    2019
  • 资助金额:
    $ 19.25万
  • 项目类别:
Enhanced auditory prosthesis using a penetrating auditory-nerve electrode
使用穿透性听觉神经电极的增强型听觉假体
  • 批准号:
    9913505
  • 财政年份:
    2019
  • 资助金额:
    $ 19.25万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了