Finding combinatorial drug repositioning therapy for Alzheimer's disease and related dementias
寻找治疗阿尔茨海默病和相关痴呆症的组合药物重新定位疗法
基本信息
- 批准号:10598207
- 负责人:
- 金额:$ 30.27万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-04-01 至 2025-03-31
- 项目状态:未结题
- 来源:
- 关键词:AccountabilityAddressAlgorithmsAlzheimer&aposs DiseaseAlzheimer&aposs disease related dementiaAlzheimer&aposs disease therapyAreaArtificial IntelligenceBlack PopulationsClimactericClinicalCost SavingsCustomDataData AnalysesData CollectionData ProtectionData SetDecision MakingDevelopmentDiabetes MellitusDiagnosticDrug CombinationsEconomic FactorsEconomicsEnsureEquilibriumEthicsGoalsHealthHealth Services AccessibilityHealthcareHealthcare IndustryHeterogeneityHypertensionIncidenceKnowledgeLeadLearningLegalMachine LearningMeasurementMedicineMethodologyMethodsMinority GroupsModelingOutcomeParentsPatientsPerformancePharmaceutical PreparationsPhasePlayPopulationProceduresProcessProtective AgentsROC CurveRecommendationResearchRiskSamplingSensitivity and SpecificitySourceStructureSubgroupSystemTechniquesTechnologyTrainingTrustWorkalgorithmic biasbaseburden of illnesscausal modelclinical applicationcombinatorialdesigndrug repurposinghealth disparityhuman errorimprovedinnovationlarge datasetsmachine learning modelnovelopportunity costoutcome predictionparitypatient populationpatient subsetsprecision medicinesample collectionsocialsocial health determinantssocial implicationsoftware developmenttooltreatment planningtrustworthinessunderserved communityuser-friendly
项目摘要
Summary
Artificial intelligence and machine learning (ML) models are becoming increasingly popular in
clinical applications. If we allow these “autonomous” ML models to make recommendations for
clinical decisions, it is important to ensure that they do introduce algorithmic unfairness (e.g.,
differences in the burden of disease or opportunities of treatment for different populations). We
propose novel technological solutions to mitigate algorithmic unfairness. We will address two
major types of data biases (subgroup and representation) to reduce their negative impact on ML
models. Based on contextual information and novel causal inference techniques, we will identify
potential outliers and task-irrelevant confounders and address them with customized mitigation
strategies (e.g., down-sampling and factor reduction) to avoid learning erroneous information
that might lead to health disparities. In addition, we will propose FairAUC (a new optimization
mechanism) to maximize prediction accuracy while considering fairness by design. As opposed
to post-hoc fairness rectification approaches, our method will automatically consider both
objectives in the training phase to strike the optimal balance between accuracy and fairness.
概括
人工智能和机器学习(ML)模型在
临床应用。如果我们允许这些“自主” ML模型提出建议
临床决定,重要的是要确保它们确实引入算法不公平(例如,
疾病伯恩的差异或不同人群的治疗机会)。
建议减轻算法不公平的新型技术解决方案。我们将解决两个
主要类型的数据偏见(亚组和表示),以减少其对ML的负面影响
型号。基于上下文信息和新颖的因果推理技术,我们将确定
潜在的异常值和任务 - 涉及混杂因素,并通过自定义缓解措施来解决它们
策略(例如,下采样和减少因素),以避免学习错误的信息
这可能会导致健康差异。此外,我们将提出Fairauc(一种新的优化
机制),以最大程度地提高预测准确性,同时考虑设计公平。而不是反对
为了事后公平纠正方法,我们的方法将自动考虑同时考虑
训练阶段的目标,以实现准确性和公平之间的最佳平衡。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Xiaoqian Jiang其他文献
Xiaoqian Jiang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Xiaoqian Jiang', 18)}}的其他基金
Robust privacy preserving distributed analysis platform for cancer research: addressing data bias and disparities
用于癌症研究的强大隐私保护分布式分析平台:解决数据偏差和差异
- 批准号:
10642562 - 财政年份:2023
- 资助金额:
$ 30.27万 - 项目类别:
Harmonizing multiple clinical trials for Alzheimer's disease to investigate differential responses to treatment via federated counterfactual learning
协调阿尔茨海默病的多项临床试验,通过联合反事实学习研究对治疗的差异反应
- 批准号:
10714797 - 财政年份:2023
- 资助金额:
$ 30.27万 - 项目类别:
iDASH Genome Privacy and Security Competition Workshop
iDASH 基因组隐私和安全竞赛研讨会
- 批准号:
10614292 - 财政年份:2023
- 资助金额:
$ 30.27万 - 项目类别:
Decentralized differentially-private methods for dynamic data release and analysis
用于动态数据发布和分析的去中心化差分隐私方法
- 批准号:
10740597 - 财政年份:2023
- 资助金额:
$ 30.27万 - 项目类别:
Decentralized differentially-private methods for dynamic data release and analysis
用于动态数据发布和分析的去中心化差分隐私方法
- 批准号:
10367349 - 财政年份:2022
- 资助金额:
$ 30.27万 - 项目类别:
Finding combinatorial drug repositioning therapy for Alzheimer's disease and related dementias
寻找治疗阿尔茨海默病和相关痴呆症的组合药物重新定位疗法
- 批准号:
10615684 - 财政年份:2020
- 资助金额:
$ 30.27万 - 项目类别:
Finding combinatorial drug repositioning therapy for Alzheimer's disease and related dementias
寻找治疗阿尔茨海默病和相关痴呆症的组合药物重新定位疗法
- 批准号:
10133501 - 财政年份:2020
- 资助金额:
$ 30.27万 - 项目类别:
Finding combinatorial drug repositioning therapy for Alzheimer's disease and related dementias
寻找治疗阿尔茨海默病和相关痴呆症的组合药物重新定位疗法
- 批准号:
10377455 - 财政年份:2020
- 资助金额:
$ 30.27万 - 项目类别:
Decentralized differentially-private methods for dynamic data release and analysis
用于动态数据发布和分析的去中心化差分隐私方法
- 批准号:
9239100 - 财政年份:2017
- 资助金额:
$ 30.27万 - 项目类别:
Open Health Natural Language Processing Collaboratory
开放健康自然语言处理合作实验室
- 批准号:
9385056 - 财政年份:2017
- 资助金额:
$ 30.27万 - 项目类别:
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Sharp Neonatal Research Institute Clinical Center (Sharp NRI-CC)
夏普新生儿研究所临床中心 (Sharp NRI-CC)
- 批准号:
10683030 - 财政年份:2023
- 资助金额:
$ 30.27万 - 项目类别:
A novel platform for synthetic generation and statistical obfuscation of tabular clinical data, simulated images, and machine-generated text
用于表格临床数据、模拟图像和机器生成文本的合成生成和统计混淆的新颖平台
- 批准号:
10696488 - 财政年份:2023
- 资助金额:
$ 30.27万 - 项目类别:
VIPCare: Virtual Predictive Care workflow with integrated surveillance for optimal care protocol selection and management in at-risk prostate cancer patients
VIPCare:虚拟预测护理工作流程,具有综合监测功能,可为高危前列腺癌患者提供最佳护理方案选择和管理
- 批准号:
10758350 - 财政年份:2023
- 资助金额:
$ 30.27万 - 项目类别:
Decentralized differentially-private methods for dynamic data release and analysis
用于动态数据发布和分析的去中心化差分隐私方法
- 批准号:
10740597 - 财政年份:2023
- 资助金额:
$ 30.27万 - 项目类别:
A deep learning algorithm to detect signs of cognitive impairment in electronic health records
用于检测电子健康记录中认知障碍迹象的深度学习算法
- 批准号:
10900991 - 财政年份:2023
- 资助金额:
$ 30.27万 - 项目类别: