A deep learning algorithm to detect signs of cognitive impairment in electronic health records
用于检测电子健康记录中认知障碍迹象的深度学习算法
基本信息
- 批准号:10900991
- 负责人:
- 金额:$ 84.34万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-15 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:AccountabilityActive LearningAddressAlgorithmsAlzheimer&aposs disease diagnosisAlzheimer&aposs disease related dementiaAppointmentArtificial IntelligenceBehavioralCaringCharacteristicsClassificationClinicalCodeCognitiveCohort StudiesCommunitiesComplexComputer softwareComputerized Medical RecordComputersDataData ElementData SetDatabasesDementiaDetectionDiagnosisElderlyElectronic Health RecordElectronicsEmergency department visitEnsureEntropyEpidemiologistEvaluationFunctional disorderFutureGeographyGuidelinesHealthHealth Care CostsHealth ProfessionalHealth SciencesHealth systemHealthcareImpaired cognitionIndividualInstitutionInterventionKnowledgeLabelLearningMeasuresMedical RecordsMethodsModelingNatural Language ProcessingOnline SystemsOutcomeOutcome StudyPatient Care ManagementPatientsPatternPerformancePharmaceutical PreparationsProviderRecording of previous eventsReference StandardsResearchResearch PersonnelResearch PriorityResourcesSample SizeSamplingScientistSiteSourceSpecialistSpecific qualifier valueStructureSymptomsTechnologyTestingTexasTextTrainingUniversitiesValidationWisconsinWorkadjudicationalgorithmic biasannotation systemburden of illnessclinical careclinical phenotypedeep learningdeep learning algorithmdeep learning modeldemographicsdrug repurposingepidemiology studyhealth care service utilizationhealth care settingsimprovedinnovationlearning strategymild cognitive impairmentmultidisciplinarypragmatic trialresearch studyscreeningsource localizationstructured datatoolunstructured data
项目摘要
Alzheimer’s Disease and Related Dementias (AD/ADRD) outcomes from real-world data, such as electronic
health records (EHR), offer the possibility of examining a wide variety of research questions that cannot be
answered efficiently—or at all—in other settings. A key challenge is that AD/ADRD is under-recognized in the
community, under-diagnosed by healthcare professionals, and under-coded in claims data—and can be
mislabeled in any setting. Thus, approaches relying on dementia diagnosis codes or medications suffer from
inaccuracies in these data. EHR has a wealth of information in clinical notes, patient health history, and health
system interactions that often contain signs of cognitive decline. Deep learning algorithms can leverage and
learn from these complex text and data patterns in EHR. In this proposal, we aim to develop and evaluate a
deep learning algorithm to improve the detection of cognitive impairment due to underlying AD/ADRD
pathophysiology (including cognitive concerns, mild cognitive impairment, and dementia) using the EHR of
three large healthcare institutions. For training and evaluation of the algorithm, we will use a “seed” reference
standard set with detailed chart review and adjudication of cognitive diagnosis by an expert clinician (n=1,000),
and then apply active learning strategies with diversity sampling to better reflect the characteristics of US older
adults and iteratively increase sample size to n=20,000. We will rigorously evaluate the algorithm using EHR
from all three institutions, and develop openly available guidelines and resources for the research community.
Our specific aims are: 1) To develop and evaluate a deep learning NLP tool to identify patients with cognitive
impairment using EHR at one institution; 2) To refine and evaluate the performance of our EHR deep learning
algorithm at two other healthcare institutions; and 3) To develop open guidelines, resources, and tools for EHR
data use in dementia research. We will measure the marginal improvement in accuracy of our deep learning-
based classification relative to models based on diagnosis codes and medications alone, and characterize the
predictors of poor model performance, both to improve the model and to understand potential biases. As such,
our tool will provide a better understanding of the limitations of using diagnosis codes and/or medications in
dementia research. Cutting-edge deep learning algorithms have been applied to many real-world tasks but in a
limited manner to AD/ADRD. We anticipate that our state-of-the-art deep learning algorithm, which will be
rigorously developed and validated with large representative datasets at multiple institutions, will more
efficiently and accurately detect signs of cognitive impairment and can be readily deployed by practitioners.
Improved screening of cognitive impairment in EHR will enhance dementia research studies and enable large-
scale pragmatic trails. In the future, we hope, the proposed tool will also be useful in clinical settings to flag
patients with cognitive impairment who could benefit from an evaluation or be referred to specialist care.
来自现实世界数据的阿尔茨海默氏病和相关痴呆症(AD/ADRD)结果,例如电子
健康记录(EHR),提供了检查各种各样的研究问题的可能性
在其他设置中有效地回答或根本回答。一个关键的挑战是AD/ADRD在
社区,由医疗保健专业人员诊断不远,在索赔数据中编码不足 - 可以是
在任何情况下都标记了标签。这是依靠痴呆诊断代码或药物遭受的方法
这些数据的不准确性。 EHR在临床笔记,患者健康病史和健康方面有很多信息
系统相互作用通常包含认知能力下降的迹象。深度学习算法可以利用和
从EHR中的这些复杂的文本和数据模式中学习。在此提案中,我们旨在开发和评估
深度学习算法以改善由于基础广告/ADRD引起的认知障碍的检测
使用EHR的病理生理学(包括认知问题,轻度认知障碍和痴呆症)
三个大型医疗机构。为了培训和评估算法,我们将使用“种子”参考
具有详细图表审查和对认知诊断的详细图表的标准集(n = 1,000),
然后应用具有多样性抽样的主动学习策略以更好地反映我们年长的特征
成人和迭代的样本量增加到n = 20,000。我们将使用EHR严格评估算法
从所有三个机构中,并为研究界开发公开可用的准则和资源。
我们的具体目的是:1)开发和评估深度学习的NLP工具以识别认知患者
在一个机构使用EHR的损害; 2)完善和评估我们的EHR深度学习的表现
其他两个医疗机构的算法; 3)为EHR制定开放指南,资源和工具
痴呆研究中的数据使用。我们将衡量我们深度学习准确性的边际提高 -
基于基于诊断代码和药物的模型的基于模型的分类,并表征
模型性能差的预测因素,无论是改善模型还是了解潜在偏见。像这样,
我们的工具将更好地了解使用诊断代码和/或药物的局限性
痴呆研究。尖端的深度学习算法已应用于许多现实世界任务,但
广告/ADRD的有限方式。我们预计我们最先进的深度学习算法将是
在多个机构的大型代表数据集中进行严格开发和验证,将更多
有效,准确地检测出认知障碍的迹象,并且可以由从业者容易部署。
改善EHR认知障碍的筛查将增强痴呆症研究,并使大量研究
比例尺务实的步道。我们希望将来,提出的工具在临床环境中也将很有用。
认知障碍的患者可以从评估中受益或被转诊为专业护理。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Sudeshna Das其他文献
Sudeshna Das的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Sudeshna Das', 18)}}的其他基金
相似国自然基金
企业领导者积极心理优势的识别、效应及机制:基于追随者视角的研究
- 批准号:71872117
- 批准年份:2018
- 资助金额:48.0 万元
- 项目类别:面上项目
积极背景刺激影响学习记忆的认知神经机制
- 批准号:31470980
- 批准年份:2014
- 资助金额:80.0 万元
- 项目类别:面上项目
大规模垃圾邮件过滤中的集成化SVM增量学习机制研究
- 批准号:60970081
- 批准年份:2009
- 资助金额:31.0 万元
- 项目类别:面上项目
相似海外基金
The role of state agencies in mental health services for individuals with co-occurring intellectual and developmental disabilities and mental illness
国家机构在为同时患有智力和发育障碍以及精神疾病的个人提供心理健康服务方面的作用
- 批准号:
10534976 - 财政年份:2023
- 资助金额:
$ 84.34万 - 项目类别:
GREAT: Collaborative Genomic Initiative between Prairie View A&M and Texas A&M Universities
伟大:Prairie View A 之间的基因组合作计划
- 批准号:
10666233 - 财政年份:2023
- 资助金额:
$ 84.34万 - 项目类别:
The Application of a Theoretical Framework to Assess the Acceptability of a Health-Related Social Needs Screening Tool Among Black Patients In New York City
应用理论框架评估纽约市黑人患者对健康相关社会需求筛查工具的接受程度
- 批准号:
10826205 - 财政年份:2023
- 资助金额:
$ 84.34万 - 项目类别:
The Development and Evaluation of Enhanced Digital-Chemosensory-Based Olfactory Training for Remote Management of Substance Use Disorders (EDITOR)
用于药物使用障碍远程管理的增强型数字化学感应嗅觉训练的开发和评估(编辑)
- 批准号:
10469912 - 财政年份:2022
- 资助金额:
$ 84.34万 - 项目类别: