Harmonizing multiple clinical trials for Alzheimer's disease to investigate differential responses to treatment via federated counterfactual learning
协调阿尔茨海默病的多项临床试验,通过联合反事实学习研究对治疗的差异反应
基本信息
- 批准号:10714797
- 负责人:
- 金额:$ 67.93万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-01 至 2028-05-31
- 项目状态:未结题
- 来源:
- 关键词:AddressAffectAgreementAlzheimer&aposs DiseaseAlzheimer&aposs disease pathologyAlzheimer&aposs disease patientAntihypertensive AgentsAtrophicCharacteristicsChronicClinical DataClinical TrialsCognitiveDataData SetDisease ProgressionEnsureFailureFriendsFutureGalantamineGenderGoldGrainHippocampusImpaired cognitionIndividualKnowledgeLearningModalityModelingNerve DegenerationObesityOutcomeOutsourcingPatientsPharmaceutical PreparationsPharmacologic SubstancePhase II Clinical TrialsPhenotypePlasmaPoliciesPopulationPrediction of Response to TherapyReportingResearchRiskSample SizeSubgroupSubjects SelectionsTrainingcomorbiditydata accessdeep learningdistributed datadrug developmentfederated learningforestindividual responseinformatics toolinnovationmachine learning modelmachine learning predictionoutcome predictionpatient populationpatient responsepatient subsetsphase III trialpredictive modelingprivacy preservationprospectiverandomized, clinical trialsresponsesexsuccesstherapy developmenttransmission processtreatment effecttreatment response
项目摘要
Drug development for treating Alzheimer's disease (AD) has been challenging and expensive.
Drug failures are very likely due, in large part, to the differential responses of patients to
different treatments. Some subsets of patients have treatment moderators and respond
differently. Identifying such responsive subsets has been challenging due to limited sample size
in one clinical trial or may be beyond the scope of the ad-hoc analyses in individual clinical
trials, considering the complexity of AD. Another important subset of patients are rapid
progressors, who have faster rates of cognitive decline in a defined period and may respond
differently to treatments than other AD patients. Predicting the rapid progressors and their
differential responses is very challenging. Machine learning prediction has been no better than
random guesses due to volatility of cognitive scores and insufficiency of comprehensive and
fine-grained longitudinal clinical data. Pooling patient-level data from multiple clinical trials data
may address the above challenges by increasing sample size and obtaining a better
coverage/representation of the patient population. However, many clinical trials data are stored
in distributed data access servers, and data use agreements often prohibit exporting the patient-
level data out of the local servers. We aim to address the challenges via advanced informatics
tools using AI/ML models. We will develop privacy-preserving federated models to harmonize
local counterfactual effect estimation models into a global model without exchanging patient-
level data. Aim 1 focuses on developing a federated subgrouping model based on differential
responses. Aim 2 focuses on developing a federated counterfactual regression model using
deep learning to predict rapid progressors and their differential responses. Aim 3 focuses on
verifying and refining the subgroups prediction using real-world observation in nation-wide
consortium data. If successful, this project will contribute to identifying patient subgroups that
respond differently, which will result in smaller, less expensive, and more targeted AD clinical
trials that expose fewer patients to experimental medications to which they are unlikely to
respond.
治疗阿尔茨海默氏病(AD)的药物开发一直具有挑战性且昂贵。
在很大程度上,药物衰竭很可能是由于患者对患者的不同反应
不同的治疗方法。一些患者子集有治疗主持人并做出反应
对不同。由于样本量有限,识别这种响应性子集已经具有挑战性
在一项临床试验中,或可能超出单个临床中临时分析的范围
试验,考虑到AD的复杂性。患者的另一个重要子集很快
经验者,他们在定义的时期内的认知能力下降速度更快,并且可能会做出回应
与其他AD患者的治疗不同。预测快速进步者及其
差异反应非常具有挑战性。机器学习预测并不比
由于认知得分的波动和综合性不足和综合性和
细粒纵向临床数据。从多个临床试验数据中汇总患者级数据
可以通过增加样本量并获得更好的挑战来应对上述挑战
患者人群的覆盖范围/表示。但是,存储了许多临床试验数据
在分布式数据访问服务器中,数据使用协议通常禁止出口患者 -
将数据从本地服务器中排出。我们旨在通过高级信息学应对挑战
使用AI/ML型号的工具。我们将开发保护隐私的联合模型以协调一致
局部反事实效应估计模型中的全球模型,而无需交换患者 -
级别数据。 AIM 1专注于开发基于差异的联合亚组模型
回答。 AIM 2专注于使用使用联合反事实回归模型
深度学习以预测快速进步者及其不同的反应。 AIM 3专注于
在全国范围内使用现实世界观察来验证和完善亚组预测
财团数据。如果成功,该项目将有助于确定患者子组
反应不同,这将导致较小,更便宜且针对性的广告临床
暴露于较少患者的试验中,他们不太可能采取的实验药物
回应。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Xiaoqian Jiang其他文献
Xiaoqian Jiang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Xiaoqian Jiang', 18)}}的其他基金
Robust privacy preserving distributed analysis platform for cancer research: addressing data bias and disparities
用于癌症研究的强大隐私保护分布式分析平台:解决数据偏差和差异
- 批准号:
10642562 - 财政年份:2023
- 资助金额:
$ 67.93万 - 项目类别:
iDASH Genome Privacy and Security Competition Workshop
iDASH 基因组隐私和安全竞赛研讨会
- 批准号:
10614292 - 财政年份:2023
- 资助金额:
$ 67.93万 - 项目类别:
Decentralized differentially-private methods for dynamic data release and analysis
用于动态数据发布和分析的去中心化差分隐私方法
- 批准号:
10740597 - 财政年份:2023
- 资助金额:
$ 67.93万 - 项目类别:
Decentralized differentially-private methods for dynamic data release and analysis
用于动态数据发布和分析的去中心化差分隐私方法
- 批准号:
10367349 - 财政年份:2022
- 资助金额:
$ 67.93万 - 项目类别:
Finding combinatorial drug repositioning therapy for Alzheimer's disease and related dementias
寻找治疗阿尔茨海默病和相关痴呆症的组合药物重新定位疗法
- 批准号:
10615684 - 财政年份:2020
- 资助金额:
$ 67.93万 - 项目类别:
Finding combinatorial drug repositioning therapy for Alzheimer's disease and related dementias
寻找治疗阿尔茨海默病和相关痴呆症的组合药物重新定位疗法
- 批准号:
10598207 - 财政年份:2020
- 资助金额:
$ 67.93万 - 项目类别:
Finding combinatorial drug repositioning therapy for Alzheimer's disease and related dementias
寻找治疗阿尔茨海默病和相关痴呆症的组合药物重新定位疗法
- 批准号:
10133501 - 财政年份:2020
- 资助金额:
$ 67.93万 - 项目类别:
Finding combinatorial drug repositioning therapy for Alzheimer's disease and related dementias
寻找治疗阿尔茨海默病和相关痴呆症的组合药物重新定位疗法
- 批准号:
10377455 - 财政年份:2020
- 资助金额:
$ 67.93万 - 项目类别:
Decentralized differentially-private methods for dynamic data release and analysis
用于动态数据发布和分析的去中心化差分隐私方法
- 批准号:
9239100 - 财政年份:2017
- 资助金额:
$ 67.93万 - 项目类别:
Open Health Natural Language Processing Collaboratory
开放健康自然语言处理合作实验室
- 批准号:
9385056 - 财政年份:2017
- 资助金额:
$ 67.93万 - 项目类别:
相似国自然基金
通信协议影响下受限运动建模与估计问题研究
- 批准号:62173068
- 批准年份:2021
- 资助金额:58 万元
- 项目类别:面上项目
对赌协议视角下并购活动金融风险及影响机制研究
- 批准号:72103217
- 批准年份:2021
- 资助金额:24.00 万元
- 项目类别:青年科学基金项目
抱团取暖:中小股东签订一致行动人协议的动因与影响研究
- 批准号:72002086
- 批准年份:2020
- 资助金额:24 万元
- 项目类别:青年科学基金项目
时空视角下的对赌协议与企业并购:绩效、风险及影响机制
- 批准号:
- 批准年份:2020
- 资助金额:24 万元
- 项目类别:青年科学基金项目
调度协议影响下的单主多从遥操作系统建模与控制
- 批准号:61903030
- 批准年份:2019
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
相似海外基金
The Proactive and Reactive Neuromechanics of Instability in Aging and Dementia with Lewy Bodies
衰老和路易体痴呆中不稳定的主动和反应神经力学
- 批准号:
10749539 - 财政年份:2024
- 资助金额:
$ 67.93万 - 项目类别:
High-throughput thermodynamic and kinetic measurements for variant effects prediction in a major protein superfamily
用于预测主要蛋白质超家族变异效应的高通量热力学和动力学测量
- 批准号:
10752370 - 财政年份:2023
- 资助金额:
$ 67.93万 - 项目类别:
Genome Instability Induced Anti-Tumor Immune Responses
基因组不稳定性诱导的抗肿瘤免疫反应
- 批准号:
10626281 - 财政年份:2023
- 资助金额:
$ 67.93万 - 项目类别:
Brain Mechanisms of Chronic Low-Back Pain: Specificity and Effects of Aging and Sex
慢性腰痛的脑机制:衰老和性别的特异性和影响
- 批准号:
10657958 - 财政年份:2023
- 资助金额:
$ 67.93万 - 项目类别: