A versatile structure-based therapeutic platform for development of VHH-based antitoxin and antiviral agents
一个多功能的基于结构的治疗平台,用于开发基于 VHH 的抗毒素和抗病毒药物
基本信息
- 批准号:10560883
- 负责人:
- 金额:$ 86.57万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-08-04 至 2027-07-31
- 项目状态:未结题
- 来源:
- 关键词:2019-nCoV3-DimensionalAffinityAnimal Disease ModelsAnimal ModelAnimalsAntibodiesAntibody TherapyAntiviral AgentsAreaAutoimmuneBindingBiological AssayBotulinum ToxinsBotulismCOVID-19 pandemicCOVID-19 patientCell Culture TechniquesCharacteristicsClinicalClostridium difficileCommunicable DiseasesComplexDangerousnessDataDevelopmentDiseaseEpitopesEquus caballusEvolutionFamilyFundingFutureGoalsHigh PrevalenceHumanImmuneImmune SeraInfectionIntoxicationIntramuscularLeadLengthLifeLinkMalignant NeoplasmsMediatingMessenger RNAModelingMonoclonal AntibodiesMusPassive ImmunotherapyPathologyPoisoningProductionPropertyProphylactic treatmentProteinsRNAResearchRouteSARS coronavirusSARS-CoV-2 variantSerotypingSpecificityStructureTestingTherapeuticTherapeutic AgentsTherapeutic EffectTherapeutic Monoclonal AntibodiesTherapeutic antibodiesToxinUnited States National Institutes of HealthVaccinatedVariantViralVirusVirus DiseasesWorkantitoxinclinically relevantcostdesigndisorder preventionhuman diseaseimprovedin vivomanufacturemicrobialnanobodiesnanoparticleneutralizing antibodynext generationnovelnovel therapeuticspandemic potentialpathogenporcine modelpreventproduct developmentprophylacticpublic health relevancereceptor bindingrisk minimizationstandard of caretechnology platformtherapeutic developmenttransmission processvaccine efficacyvariants of concernvirtual
项目摘要
ABSTRACT
In previous NIH sponsored research we successfully tested the hypothesis that integrating structural and
mechanistic information into heteromultimeric VHH-based neutralizing agent (VNA) design facilitated
development of antitoxins with even greater efficacy and versatility. In this renewal proposal, we will apply these
findings to test the hypothesis that our designer VNA platform, which is rapidly responsive to new threats, will
permit development of highly practical, next-generation antitoxin and antiviral products that possess excellent
potencies in treating intoxications or viral infections and are effective against a broad range of natural pathogen
variants. Our research will focus on two pathogens that are major current threats which could benefit from next-
generation therapeutics: botulinum neurotoxin (BoNT) and SARS-CoV-2. We propose two Specific Aims which
will be underway simultaneously throughout the five years of research. In Aim 1, we will develop a small pool of
antitoxin VNAs that protect against all subtypes of the three prevalent BoNT serotypes (A, B and E). BoNTs are
CDC Tier 1 select agents. However, the few available antitoxin treatments against BoNTs primarily derive from
large animal polyclonal antisera, such as the equine botulism antitoxin HBAT, which suffer from multiple
manufacturing and storage challenges. Our goal is to test the platform’s ability to produce highly practical VNAs
as a next-generation BoNT antitoxin product, likely delivered as RNA nanoparticles, which improves on the
potencies and natural variant specificities of the current HBAT antitoxin product and is rapidly responsive to
potential new BoNT threats. In Aim 2 we will develop a single VNA antiviral agent that protects against known
variants of SARS-CoV-1 and SARS-CoV-2. SARS-CoV-2 is the viral cause of the ongoing COVID-19 pandemic.
A promising strategy for rapid development of a therapy is development of SARS-CoV-2 neutralizing antibodies,
especially antibodies targeting the spike protein, for prophylactic or passive immunotherapies. However, novel
variants of SARS-CoV-2, which cause enhanced infection and transmission, have emerged, and more
dangerous variants are expected to evolve. Of immediate concern are variants that partially escape
neutralization by current Ab-based therapies and in vaccinated or previously-infected COVID-19 patients, leading
to reduced vaccine efficacy in certain areas with a high prevalence of these variants. We propose an mRNA-
based antiviral product that, once administered, elicits expression of a VNA with extremely high virus neutralizing
potency. The VNA will contain multiple covalently linked VHHs binding to conserved epitopes of the spike protein.
This approach will test the platform’s ability to develop a product that minimizes the risks of immune escape
through evolution and selection of clinical strains of SARS-CoV-2 and SARS-CoV-1. If successful, this
technology platform could have broad applications in creating practical therapeutics for a wide variety of
emerging and potential pandemic viral infections, bioterror threat agents, and other infectious diseases.
抽象的
在以前的NIH赞助研究中,我们成功地检验了整合结构和整合的假设
基于异型VHH的机械信息基于中和剂(VNA)设计促进
开发具有更高效率和多功能性的抗毒素。在此续签建议中,我们将应用这些
研究结果是为了测试我们的设计师VNA平台迅速响应新威胁的假设,将
允许开发具有优秀的高度实用,下一代抗毒素和抗病毒产品
治疗肠毒性或病毒感染的能力,并且有效地抵抗广泛的自然病原体
变体。我们的研究将集中于两种病原体,这些病原体是当前主要威胁,这些威胁可能会受益于下一步的病原体
生成疗法:肉毒杆菌神经毒素(BONT)和SARS-COV-2。我们提出了两个具体目标
在整个研究的五年中,将在进行中。在AIM 1中,我们将开发一个小池
抗毒素VNA可预防三种普遍的BONT血清型(A,B和E)的所有亚型。 Bonts是
CDC Tier 1选择代理。但是,少数针对BONT的可用抗毒素治疗源自
大动物多克隆抗血清,例如马肉毒杆菌抗毒素HBAT,患有多个
制造和存储挑战。我们的目标是测试平台生产高度实用的VNA的能力
作为下一代BONT抗毒素产物,可能以RNA纳米颗粒的形式递送,可改善
当前HBAT抗毒素产品的电位和自然变体规范,对
潜在的新BONT威胁。在AIM 2中,我们将开发一个单一的VNA抗病毒剂,以防止已知
SARS-COV-1和SARS-COV-2的变体。 SARS-COV-2是正在进行的Covid-19-19大流行的病毒原因。
快速发展治疗的有前途的策略是SARS-COV-2中和抗体的发展,
尤其是针对峰值蛋白的抗体,用于预防性或被动免疫疗法。但是,新颖
SARS-COV-2的变体已经出现了增强的感染和传播,并且更多
危险的变体有望发展。直接关注的是部分逃脱的变体
通过当前基于AB的疗法以及预疫苗或先前感染的Covid-19患者中和,领先
为了降低这些变体患病率高的某些区域的疫苗效率。我们提出了mrna-
基于抗病毒的产物,一旦给药,就会引起具有极高病毒中和的VNA的表达
效力。 VNA将包含多个共价链接的VHHS与尖峰蛋白的表位结合。
这种方法将测试平台开发产品的能力,以最大程度地减少免疫逃生的风险
通过进化和选择SARS-COV-2和SARS-COV-1的临床菌株。如果成功,这
技术平台可能在创建各种各样的实用疗法方面具有广泛的应用
新兴和潜在的大流行病毒感染,生物侵蚀剂和其他传染病。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Rongsheng Jin其他文献
Rongsheng Jin的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Rongsheng Jin', 18)}}的其他基金
Structural basis for recognition of SV2 by type E botulinum neurotoxin
E型肉毒杆菌神经毒素识别SV2的结构基础
- 批准号:
10281936 - 财政年份:2021
- 资助金额:
$ 86.57万 - 项目类别:
Developing broad-spectrum therapeutics against C. difficile toxins
开发针对艰难梭菌毒素的广谱疗法
- 批准号:
10181652 - 财政年份:2021
- 资助金额:
$ 86.57万 - 项目类别:
Structural basis for recognition of SV2 by type E botulinum neurotoxin
E型肉毒杆菌神经毒素识别SV2的结构基础
- 批准号:
10448471 - 财政年份:2021
- 资助金额:
$ 86.57万 - 项目类别:
Developing broad-spectrum therapeutics against C. difficile toxins
开发针对艰难梭菌毒素的广谱疗法
- 批准号:
10548826 - 财政年份:2021
- 资助金额:
$ 86.57万 - 项目类别:
Developing broad-spectrum therapeutics against C. difficile toxins
开发针对艰难梭菌毒素的广谱疗法
- 批准号:
10348784 - 财政年份:2021
- 资助金额:
$ 86.57万 - 项目类别:
Structural basis of Rho glucosylation by Clostridium difficile toxins
艰难梭菌毒素 Rho 糖基化的结构基础
- 批准号:
10308686 - 财政年份:2020
- 资助金额:
$ 86.57万 - 项目类别:
Molecular mechanisms of botulinum neurotoxin neutralization
肉毒杆菌神经毒素中和的分子机制
- 批准号:
9160875 - 财政年份:2016
- 资助金额:
$ 86.57万 - 项目类别:
Molecular mechanisms of botulinum neurotoxin neutralization
肉毒杆菌神经毒素中和的分子机制
- 批准号:
9918242 - 财政年份:2016
- 资助金额:
$ 86.57万 - 项目类别:
Structural mechanism for recognition of host receptor by botulinum neurotoxin A
A型肉毒杆菌神经毒素识别宿主受体的结构机制
- 批准号:
9238660 - 财政年份:2016
- 资助金额:
$ 86.57万 - 项目类别:
Molecular mechanisms of botulinum neurotoxin neutralization
肉毒杆菌神经毒素中和的分子机制
- 批准号:
9271846 - 财政年份:2016
- 资助金额:
$ 86.57万 - 项目类别:
相似国自然基金
单一取向CsPbBr3一维光波导阵列在异质半导体低维结构上的面内集成及其在光电互联中的应用研究
- 批准号:62374057
- 批准年份:2023
- 资助金额:48 万元
- 项目类别:面上项目
磁场-电场协同作用下LaAlO3/SrTiO3界面二维电子气的圆偏振光伏效应研究
- 批准号:12304222
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
Sirtuin 3维持平滑肌细胞线粒体呼吸功能抑制A型主动脉夹层发病的作用和机制
- 批准号:82300538
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
应变调控二维磁性材料VX3的磁光拉曼研究
- 批准号:12304042
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
cohesin与SYCP3协同调控精母细胞减数分裂联会复合体形成过程中染色质三维结构建立的分子机制
- 批准号:32370574
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
Structure-guided neutralizing antibodies developed using EpiVolve technology
使用 EpiVolve 技术开发的结构引导中和抗体
- 批准号:
10698958 - 财政年份:2023
- 资助金额:
$ 86.57万 - 项目类别:
Four-dimensional Adhesion Frequency Assay for Full Profiling of Receptor-ligand Interactions on Cells
四维粘附频率测定,全面分析细胞上受体-配体相互作用
- 批准号:
10707983 - 财政年份:2022
- 资助金额:
$ 86.57万 - 项目类别:
iPSC-Derived Vascularized Human Lung Organoids and Interaction Between Lung Endothelial Cells and Alveolar Epithelial Cells
iPSC 衍生的血管化人肺类器官以及肺内皮细胞和肺泡上皮细胞之间的相互作用
- 批准号:
10467249 - 财政年份:2022
- 资助金额:
$ 86.57万 - 项目类别:
Using dynamic network models to quantitatively predict changes in binding affinity/specificity that arise from long-range amino acid substitutions
使用动态网络模型定量预测由长距离氨基酸取代引起的结合亲和力/特异性的变化
- 批准号:
10707418 - 财政年份:2022
- 资助金额:
$ 86.57万 - 项目类别:
iPSC-Derived Vascularized Human Lung Organoids and Interaction Between Lung Endothelial Cells and Alveolar Epithelial Cells
iPSC 衍生的血管化人肺类器官以及肺内皮细胞和肺泡上皮细胞之间的相互作用
- 批准号:
10673199 - 财政年份:2022
- 资助金额:
$ 86.57万 - 项目类别: