Molecular mechanisms of botulinum neurotoxin neutralization
肉毒杆菌神经毒素中和的分子机制
基本信息
- 批准号:9160875
- 负责人:
- 金额:$ 63.62万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-05-10 至 2021-04-30
- 项目状态:已结题
- 来源:
- 关键词:AffinityAnimalsAntidotesAntitoxinsBacterial ToxinsBindingBinding SitesBontoxilysinBotulinum Toxin Type ABotulismCell surfaceCenters for Disease Control and Prevention (U.S.)Cleaved cellClostridium botulinumCommunitiesComplementComplexDataDevelopmentDiagnosticDiseaseEndopeptidasesEnteralEpitopesExposure toGene Therapy AgentGoalsHealthHumanImmune SeraInfectionInfectious AgentIntoxicationInvadedKnowledgeLeadLengthLinkLungMapsMediatingMembraneMethodsMicrobeModelingMolecularMutationNeuronsParalysedPathologyPeptide HydrolasesPeptidesPrevention approachPrevention strategyProcessPropertyProteinsReagentResearchRiskRoleSNAP receptorSerotypingSerumSeveritiesSiteSpecificityStructural ModelsStructureSymptomsSyndromeTechnologyTestingTherapeuticTimeToxic effectToxinVirusbasebiodefensebiothreatdesignflexibilitygene therapyimprovedinhibitor/antagonistinnovationinterestmouse modelneurotoxin receptorneurotransmissionnovelnovel strategiespathogenpreventpublic health relevancereceptorreceptor bindingsmall moleculetreatment strategy
项目摘要
Project summary
Botulism is caused by exposure to protein toxins called botulinum neurotoxins (BoNTs) that are produced by Clostridium
botulinum. BoNTs are CDC Tier 1 select agent for which no antidote currently exists. Seven different BoNT serotypes
have been discovered to date (BoNT/A-G), many having numerous additional BoNT subtypes. However the only
currently available treatments are serum based antitoxin products derived from large animals that are only effective if
administered soon after BoNT intoxication. The challenge of developing BoNT therapeutics is exacerbated by the fact that
the seven known BoNT serotypes are each distinct toxins with distinct receptor specificities and proteases that cleave at
distinct sites on SNARE proteins to disrupt nerve transmission. Due to the severity of the risk, the paucity of treatment
options, and the complexity of the challenge, novel approaches to the prevention and treatment of BoNT intoxication are
clearly needed. We now have extensive evidence in multiple toxin models demonstrating that bispecific VHH-based
neutralizing agents (VNAs), consisting of two covalently linked, toxin-neutralizing VHHs, are antitoxins with potencies
that often exceed that of current monoclonal and polyclonal antitoxin agents. Furthermore, VNAs offer substantial
advantages over serum and mAb antitoxin products as they are economical to produce and highly versatile; offering
innovative new prevention and treatment strategies for toxin exposures and infections with toxin-producing pathogens
such as gene therapies and direct delivery to enteric and pulmonary sites of challenge. In this proposal, we test the
hypothesis that integrating structural and mechanistic information into VNA design will lead to even greater antitoxin
efficacy and versatility. The Specific Aims are to (1) determine the crystal structures of selected BoNT-binding VHHs in
complex with their target BoNTs; (2) define the mechanisms by which VHHs selected in Aim 1 block BoNT toxicity,
and; (3) design and test bispecific VNAs with enhanced antitoxin properties by exploiting structure/function data from
Aims 1 and 2. This will be the first comprehensive structural mapping of BoNT neutralizing epitopes, which will be
complemented with mechanistic studies of BoNT function and BoNT-host interactions. Furthermore, this study will
improve general understanding of how structural and mechanistic information can inform the design of even more
effective VNA antitoxin agents and should permit rapid development of commercial antitoxin therapeutics to treat
exposures to all BoNT serotypes and other toxin biothreat agents.
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Rongsheng Jin其他文献
Rongsheng Jin的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Rongsheng Jin', 18)}}的其他基金
A versatile structure-based therapeutic platform for development of VHH-based antitoxin and antiviral agents
一个多功能的基于结构的治疗平台,用于开发基于 VHH 的抗毒素和抗病毒药物
- 批准号:
10560883 - 财政年份:2023
- 资助金额:
$ 63.62万 - 项目类别:
Structural basis for recognition of SV2 by type E botulinum neurotoxin
E型肉毒杆菌神经毒素识别SV2的结构基础
- 批准号:
10281936 - 财政年份:2021
- 资助金额:
$ 63.62万 - 项目类别:
Developing broad-spectrum therapeutics against C. difficile toxins
开发针对艰难梭菌毒素的广谱疗法
- 批准号:
10181652 - 财政年份:2021
- 资助金额:
$ 63.62万 - 项目类别:
Structural basis for recognition of SV2 by type E botulinum neurotoxin
E型肉毒杆菌神经毒素识别SV2的结构基础
- 批准号:
10448471 - 财政年份:2021
- 资助金额:
$ 63.62万 - 项目类别:
Developing broad-spectrum therapeutics against C. difficile toxins
开发针对艰难梭菌毒素的广谱疗法
- 批准号:
10548826 - 财政年份:2021
- 资助金额:
$ 63.62万 - 项目类别:
Developing broad-spectrum therapeutics against C. difficile toxins
开发针对艰难梭菌毒素的广谱疗法
- 批准号:
10348784 - 财政年份:2021
- 资助金额:
$ 63.62万 - 项目类别:
Structural basis of Rho glucosylation by Clostridium difficile toxins
艰难梭菌毒素 Rho 糖基化的结构基础
- 批准号:
10308686 - 财政年份:2020
- 资助金额:
$ 63.62万 - 项目类别:
Molecular mechanisms of botulinum neurotoxin neutralization
肉毒杆菌神经毒素中和的分子机制
- 批准号:
9918242 - 财政年份:2016
- 资助金额:
$ 63.62万 - 项目类别:
Structural mechanism for recognition of host receptor by botulinum neurotoxin A
A型肉毒杆菌神经毒素识别宿主受体的结构机制
- 批准号:
9238660 - 财政年份:2016
- 资助金额:
$ 63.62万 - 项目类别:
Molecular mechanisms of botulinum neurotoxin neutralization
肉毒杆菌神经毒素中和的分子机制
- 批准号:
9271846 - 财政年份:2016
- 资助金额:
$ 63.62万 - 项目类别:
相似国自然基金
基于扁颅蝠类群系统解析哺乳动物脑容量适应性减小的演化机制
- 批准号:32330014
- 批准年份:2023
- 资助金额:215 万元
- 项目类别:重点项目
基于供应链视角的动物源性食品中抗微生物药物耐药性传导机制及监管策略研究
- 批准号:72303209
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于基因组数据自动化分析为后生动物类群大规模开发扩增子捕获探针的实现
- 批准号:32370477
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
大型野生动物对秦岭山地森林林下植物物种组成和多样性的影响及作用机制
- 批准号:32371605
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
闸坝建设对河口大型底栖动物功能与栖息地演变的影响-以粤西鉴江口为例
- 批准号:42306159
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Development of B8C1ad as an Orphan Drug for Iatrogenic Botulism
B8C1ad 作为治疗医源性肉毒杆菌中毒的孤儿药的开发
- 批准号:
10603832 - 财政年份:2023
- 资助金额:
$ 63.62万 - 项目类别:
Genome-wide Analysis of Anticoagulant Heparin Sulfate for Bioengineering Heparan
用于生物工程类乙酰肝素的抗凝剂硫酸肝素的全基因组分析
- 批准号:
10742641 - 财政年份:2023
- 资助金额:
$ 63.62万 - 项目类别:
An oral therapeutic to treat intoxication by prescription and illicit stimulants
一种治疗处方药和非法兴奋剂中毒的口服疗法
- 批准号:
10602918 - 财政年份:2022
- 资助金额:
$ 63.62万 - 项目类别:
Transcriptomic single-cell profiling in breathing-specific parabrachial mu-opioid receptor neurons
呼吸特异性臂旁μ阿片受体神经元的转录组单细胞分析
- 批准号:
10659220 - 财政年份:2022
- 资助金额:
$ 63.62万 - 项目类别:
Transcriptomic single-cell profiling in breathing-specific parabrachial mu-opioid receptor neurons
呼吸特异性臂旁μ阿片受体神经元的转录组单细胞分析
- 批准号:
10512708 - 财政年份:2022
- 资助金额:
$ 63.62万 - 项目类别: