Structure-guided neutralizing antibodies developed using EpiVolve technology
使用 EpiVolve 技术开发的结构引导中和抗体
基本信息
- 批准号:10698958
- 负责人:
- 金额:$ 29.61万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-05-05 至 2024-04-30
- 项目状态:已结题
- 来源:
- 关键词:2019-nCoV3-DimensionalACE2AffectAffinityAmino AcidsAnimalsAntibodiesAntigensAutoantigensB-LymphocytesBindingBinding SitesBiological AssayCOVID-19 pandemicCellsCommunicable DiseasesDataDevelopmentEpitopesEvolutionGenerationsGenetic PolymorphismHemagglutininHumanImmune TargetingImmune ToleranceImmunizationImmunizeImmunoglobulin GImmunoglobulin Somatic HypermutationImmunologic SurveillanceInfectionInfluenzaInfluenza A virusLife Cycle StagesMeasurementMembrane ProteinsMethodsModelingMolecular ConformationMutationPatientsPhasePilot ProjectsProtein Binding DomainProteinsProteomeProtomerReceptor CellRestSamplingSevere Acute Respiratory SyndromeSiteSolventsSpecificityStructureSurfaceSystemTechnologyVaccinesValidationVariantVirusdesignempowermentfightinghands-on learningimmunogenicityinfluenzavirusinnovationneutralizing antibodynovelpandemic virusphase 1 studyreceptor bindingscreeningstemtechnology developmentvaccination strategy
项目摘要
Abstract
Current strategies for developing neutralizing Abs are not effective and typically involve screening IgGs from
recovered patients. Pandemic viruses evolve for mutations that can shield their epitopes from host immune
surveillance system, so a lot of important epitopes will be missed. Even after neutralizing Abs isolated are
from human sample, they still need further characterization using epitope binning and determination of
specificities to avoid off target effect. A systematic method for exploring the entire protein surface of a virus
that can identify all potential sites on the virus which can affect its life cycle would have significant impact and
is needed. We propose a structure-guided systematic Ab development pipeline to discover Abs that
can fight infectious diseases. We propose using our novel site-directed Ab development technology,
‘EpiVolve’ (short for Epitope Evolution). EpiVolve will be used to develop site-specific Abs to solvent-exposed
residues and the adjacent ‘context’ sequences. These Abs will be used for fighting infectious disease. The
advantages of EpiVolve are a) overcoming immune tolerance and targeting virus’ human proteome-mimicking
epitopes, b) precisely targeting any antigenic epitopes regardless of its immunogenicity, c) taking advantage
of B cell expansion and somatic hypermutation to generate IgG clonotypes against one targeted residue,
which allows an ability to generate both pan-variants Abs and polymorphism-specific Abs, and d) an ability
for generating a neutralizing Ab discovery pipeline. We will model this on SARS-cov-2 virus in Phase I and
Influenza A in Phase II. EpiVolve developed site-specific antibodies will target solvent-exposed residues on
the protein surface. Structure-guided Ag design will empower the EpiVolve technology in this systematic
analysis. For this proposal, we will present the current preliminary data on the pilot EpiVolve study on SARS-
cov-2 Receptor Binding Domain (RBD), focused mainly on the host cell receptor ACE2 binding interface. For
Phase I studies, we propose to complete the pilot study and extend the study to the whole protein surface of
the RBD domain. Characterizing each Ab by its binding affinity and ability to neutralize SARS-cov-2 virus will
be included in Phase I studies. For Phase II, we propose to apply the learnings from this Phase I study on
another virus model of great importance, the Influenza A virus. Specifically targeting the solvent-accessible
residues of the conserved Stem/Stalk region of the Hemagglutinin (HA) protein
抽象的
当前开发中和ABS的策略无效,通常涉及筛选IgG
康复的患者。突变的大流行病毒演变可以使其表位免于宿主免疫
监视系统,因此会错过许多重要的表位。即使在中和ABS分离后,
从人类样本中,它们仍然需要使用表位式套筒进行进一步的表征和确定
避免目标效应的特异性。一种用于探索病毒整个蛋白质表面的系统方法
可以识别病毒上所有可能影响其生命周期的所有潜在部位将产生重大影响,并且
需要。我们提出了一个结构引导的系统AB开发管道,以发现ABS
可以打击传染病。我们建议使用我们新颖的以网站为导向的AB开发技术,
“ epivolve”(表位进化的缩写)。 epivolve将用于开发特定于溶剂的站点特异性ABS
残基和相邻的“上下文”序列。这些ABS将用于抵抗传染病。这
epivolve的优势是a)克服免疫耐受性并瞄准病毒的人类蛋白质组模仿
表位,b)精确靶向任何抗原表位,无论其免疫原性如何,c)利用优势
B细胞膨胀和体细胞超成名,以产生IgG锁骨型针对一个靶向居住
这允许产生同时生成泛变量的ABS和多态性特异性ABS以及D)能力
用于产生中和的AB发现管道。我们将在I期中对SARS-COV-2病毒进行建模,并
第二阶段的流感。 epivolve开发的特定地点特异性抗体将靶向暴露于溶剂的拯救
蛋白质表面。结构引导的AG设计将赋予这种系统的epivolve技术
分析。对于此提案,我们将介绍有关SARS-的试验epivolve研究的当前初步数据
COV-2受体结合结构域(RBD)主要集中在宿主细胞受体ACE2结合界面上。为了
第一阶段研究,我们建议完成试点研究,并将研究扩展到整个蛋白质表面
RBD域。通过其结合亲和力和中和SARS-COV-2病毒的能力来表征每个AB
被包括在I期研究中。对于第二阶段,我们建议在此阶段I研究中应用学习
另一个非常重要的病毒模型,即流感病毒。专门针对溶剂可访问
血凝素(HA)蛋白的构型茎/茎区的残留物
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Xiaofeng Li其他文献
Xiaofeng Li的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
单一取向CsPbBr3一维光波导阵列在异质半导体低维结构上的面内集成及其在光电互联中的应用研究
- 批准号:62374057
- 批准年份:2023
- 资助金额:48 万元
- 项目类别:面上项目
磁场-电场协同作用下LaAlO3/SrTiO3界面二维电子气的圆偏振光伏效应研究
- 批准号:12304222
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
Sirtuin 3维持平滑肌细胞线粒体呼吸功能抑制A型主动脉夹层发病的作用和机制
- 批准号:82300538
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
应变调控二维磁性材料VX3的磁光拉曼研究
- 批准号:12304042
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
cohesin与SYCP3协同调控精母细胞减数分裂联会复合体形成过程中染色质三维结构建立的分子机制
- 批准号:32370574
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
Potential role of skin in SARS-CoV-2 infection
皮肤在 SARS-CoV-2 感染中的潜在作用
- 批准号:
10593622 - 财政年份:2023
- 资助金额:
$ 29.61万 - 项目类别:
Mechanistic modeling of the innate immune responses of the human lung to understand the inter-individual heterogeneity of COVID-19 pneumonia
人肺先天免疫反应的机制模型,以了解 COVID-19 肺炎的个体间异质性
- 批准号:
10728396 - 财政年份:2023
- 资助金额:
$ 29.61万 - 项目类别:
Novel animal models to study organ-specific SARS-CoV-2-induced pathology
研究器官特异性 SARS-CoV-2 诱导病理学的新型动物模型
- 批准号:
10576043 - 财政年份:2022
- 资助金额:
$ 29.61万 - 项目类别:
Four-dimensional Adhesion Frequency Assay for Full Profiling of Receptor-ligand Interactions on Cells
四维粘附频率测定,全面分析细胞上受体-配体相互作用
- 批准号:
10707983 - 财政年份:2022
- 资助金额:
$ 29.61万 - 项目类别:
iPSC-Derived Vascularized Human Lung Organoids and Interaction Between Lung Endothelial Cells and Alveolar Epithelial Cells
iPSC 衍生的血管化人肺类器官以及肺内皮细胞和肺泡上皮细胞之间的相互作用
- 批准号:
10467249 - 财政年份:2022
- 资助金额:
$ 29.61万 - 项目类别: