Leveraging tissue-specific regulatory maps and network-assisted analysis to identify novel genetic risk loci for esophageal adenocarcinoma
利用组织特异性调控图和网络辅助分析来识别食管腺癌的新遗传风险位点
基本信息
- 批准号:10583526
- 负责人:
- 金额:$ 9.08万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-03-03 至 2025-02-28
- 项目状态:未结题
- 来源:
- 关键词:3-DimensionalAdvanced DevelopmentAreaBarrett EsophagusBiologicalBiological AssayBiologyChestChromatinCollaborationsCoupledCustomDNA Sequence AlterationDataData SetDetectionDevelopmentDiseaseEmbryoEnhancersEsophageal AdenocarcinomaEsophagogastric JunctionEsophagusEtiologyExpression ProfilingFOXF1 geneFOXP1 geneFutureGATA4 geneGenesGeneticGenetic ResearchGenetic RiskGenetic TranscriptionGenetic VariationGenome ScanGenotype-Tissue Expression ProjectGoalsHNF4A geneHeritabilityHumanInheritedInternationalInterventionLaboratoriesLassoLinkMADH4 geneMalignant NeoplasmsMapsMethodsMolecularMolecular TargetMutationNetwork-basedPathway interactionsPositioning AttributePredispositionPrevention strategyPreventivePrimitive foregut structurePublic HealthRecurrenceRegulatory ElementResearchResourcesRiskRoleSample SizeSignal TransductionSourceStatistical MethodsSusceptibility GeneTestingThe Cancer Genome AtlasTherapeuticTherapeutic InterventionTissue SampleTissuesValidationVariantWeightWorkcancer genomecost effectivedisorder riskgenetic architecturegenetic associationgenome sequencinggenome wide association studygenome-wideinterestmortalitymultidisciplinarynovelpreventive interventionpromoterpublic health relevancerare cancerrisk variantsextherapeutic targettranscription factortranscription regulatory networktranscriptometranscriptome sequencingtumorvalidation studies
项目摘要
PROJECT SUMMARY / ABSTRACT
Esophageal adenocarcinoma (EAC) is a rare yet lethal cancer with median survival <1 year. Genome-wide
association studies (GWAS) have estimated a substantial heritable component of risk (25-35%) for EAC and its
precursor, Barrett’s esophagus (BE). Nearly 20 novel genetic risk loci have been discovered, but most
heritability remains unexplained. ‘Missing heritability’ hinders the power of GWAS to illuminate molecular
pathways underlying disease risk and identify novel targets for intervention. In this proposal, we seek to
overcome inherent limits on sample sizes for BE/EAC and identify novel susceptibility loci by integrating
advanced network-based methods and tissue-specific regulome resources into a biologically-motivated
discovery framework. Several lines of evidence implicate transcriptional regulatory networks in BE/EAC biology
and motivate use of network-based approaches to probe undiscovered genetic underpinnings of this cancer.
These findings include reactivation of key embryonic transcriptional regulators in BE/EAC tissues; somatic
genomic alterations in transcription factor (TF) genes in EAC tumors; and genome-wide-significant GWAS
signals in close proximity to genes encoding esophageal/foregut TFs. Building on these observations, and the
prevailing view that disease-linked genetic variation functionally converges on a limited set of core biological
pathways, we hypothesize that genetic signals embedded in developmental transcriptional networks represent
an important source of ‘missing heritability’ for BE/EAC. Using customized disease-relevant reference networks
overlaid with GWAS-derived node weights, we will screen for gene-level and enhancer/promoter-level genetic
associations missed by prior genome-wide scans. Our multi-disciplinary MPI team draws on a strong track
record in BE/EAC genetics, leveraging access to the largest available GWAS datasets, and extensive omics
data from GTEx, RoadMap/ENCODE, and promoter-capture HiC. In Aim 1, we will identify co-expressed genes
enriched in risk-associated genetic variation, using transcriptional regulatory networks derived from RNA-seq
profiles. Co-expression networks assembled via mutual information and graphical lasso methods applied to
transcriptomes of 330 gastro-esophageal junction tissues will be populated with weights from gene-level
GWAS tests, and analyzed using Hierarchical Hotnet (HHN). In Aim 2, we will identify linked promoters and
enhancers with concentrated GWAS signal using regulatory maps from 3D chromatin interaction profiles.
Enhancer-target reference networks built using promoter-capture-HiC data in normal esophagus will be loaded
with weights from custom SNP-set-based tests and evaluated via HHN. Our proposed research will help
elucidate the genetic architecture of EAC and its only known precursor (BE). Candidate risk genes and
enhancers/promoters will be advanced to functional validation studies currently underway for known loci
through an ongoing collaboration, with the goal of defining new preventive/therapeutic targets for BE/EAC.
项目摘要 /摘要
食道腺癌(EAC)是一种罕见但致命的癌症,中位生存期<1年。全基因组
协会研究(GWAS)估计EAC及其ITS的风险有很大的风险(25-35%)
前体,巴雷特的食道(BE)。已经发现了将近20个新型的遗传风险基因座,但大多数
遗传力仍然无法解释。 “缺少遗传力”阻碍了GWAS照亮分子的力量
疾病风险的途径并确定新的干预目标。在此提案中,我们寻求
克服对BE/EAC样本量的继承限制,并通过整合来识别新型敏感性局部
基于网络的先进方法和组织特异性的调节资源成生物学动机
发现框架。几条证据牵涉到BE/EAC生物学中的转录调节网络
以及使用基于网络的方法来探测该癌症未发现的遗传基础的动机。
这些发现包括在BE/EAC组织中重新激活关键的胚胎转录调节剂。躯体
EAC肿瘤中转录因子(TF)基因的基因组改变;和全基因组具有重要意义的GWA
信号与编码食道/foregut TF的基因非常接近。以这些观察为基础
普遍的观点,疾病连接的遗传变异在有限的核心生物学集合上功能收敛
途径,我们假设嵌入在发育转录网络中的遗传信号代表
BE/EAC的“缺少遗传力”的重要来源。使用定制的与疾病的参考网络
与GWAS衍生的节点权重覆盖,我们将筛选基因级别和增强子/启动子级遗传
先前全基因组扫描错过的关联。我们的多学科MPI团队借鉴了很强的轨道
在BE/EAC遗传学中记录,利用访问最大的GWAS数据集的访问以及广泛的OMICS
来自GTEX,路线图/编码和启动子捕获HIC的数据。在AIM 1中,我们将确定共表达的基因
使用源自RNA-Seq的转录调节网络,富含风险相关的遗传变异
概况。通过互信息和图形套索方法组装的共表达网络应用于
330个胃食管结构组织的转录组将带有基因级的重量
GWAS测试并使用层次热网(HHN)进行了分析。在AIM 2中,我们将确定链接的发起人和
使用3D染色质相互作用曲线的调节图具有浓缩GWAS信号的增强子。
将加载使用启动子捕获者数据构建的增强子目标参考网络,将加载在正常食道中
带有定制基于SNP的测试的权重,并通过HHN进行了评估。我们提出的研究将有助于
阐明EAC及其唯一已知的先驱(BE)的遗传结构。候选风险基因和
增强子/启动子将推进目前正在已知基因座的功能验证研究
通过持续的合作,目的是定义BE/EAC的新预防/治疗目标。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Matthew Frank Buas其他文献
Matthew Frank Buas的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Matthew Frank Buas', 18)}}的其他基金
Genetics, Epigenetics, and Risk Prediction for Esophageal Adenocarcinoma
食管腺癌的遗传学、表观遗传学和风险预测
- 批准号:
10703461 - 财政年份:2022
- 资助金额:
$ 9.08万 - 项目类别:
Leveraging tissue-specific regulatory maps and network-assisted analysis to identify novel genetic risk loci for esophageal adenocarcinoma
利用组织特异性调控图和网络辅助分析来识别食管腺癌的新遗传风险位点
- 批准号:
10674212 - 财政年份:2022
- 资助金额:
$ 9.08万 - 项目类别:
Leveraging tissue-specific regulatory maps and network-assisted analysis to identify novel genetic risk loci for esophageal adenocarcinoma
利用组织特异性调控图和网络辅助分析来识别食管腺癌的新遗传风险位点
- 批准号:
10437324 - 财政年份:2022
- 资助金额:
$ 9.08万 - 项目类别:
Genetic susceptibility to Barrett's esophagus: From GWAS to biology
巴雷特食管的遗传易感性:从 GWAS 到生物学
- 批准号:
10674348 - 财政年份:2021
- 资助金额:
$ 9.08万 - 项目类别:
Genetic susceptibility to Barrett's esophagus: From GWAS to biology
巴雷特食管的遗传易感性:从 GWAS 到生物学
- 批准号:
10365524 - 财政年份:2021
- 资助金额:
$ 9.08万 - 项目类别:
相似国自然基金
CTCF通过介导染色质高级结构调控非小细胞肺癌发生发展的机制研究
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
CTCF通过介导染色质高级结构调控非小细胞肺癌发生发展的机制研究
- 批准号:32100463
- 批准年份:2021
- 资助金额:24.00 万元
- 项目类别:青年科学基金项目
发展高级固体核磁方法探索功能材料的表界面化学
- 批准号:21922410
- 批准年份:2019
- 资助金额:120 万元
- 项目类别:优秀青年科学基金项目
TACSTD2在卵巢高级别浆液性癌发生发展中的作用及分子机制研究
- 批准号:81402157
- 批准年份:2014
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Machine Learning with Scintillation Photon Counting Detectors to Advance PET Imaging Performance
利用闪烁光子计数探测器进行机器学习以提高 PET 成像性能
- 批准号:
10742435 - 财政年份:2023
- 资助金额:
$ 9.08万 - 项目类别:
1 mm resolution single-photon spectral imaging of the brain
1 毫米分辨率单光子大脑光谱成像
- 批准号:
10724955 - 财政年份:2023
- 资助金额:
$ 9.08万 - 项目类别:
In Vivo Imaging of Mitochondria Structure and Function in Therapy Resistant Lung Tumors
难治性肺肿瘤线粒体结构和功能的体内成像
- 批准号:
10747207 - 财政年份:2023
- 资助金额:
$ 9.08万 - 项目类别:
Machine Learning-based Imaging Biomarkers for Metabolic and Age-related Diseases
基于机器学习的代谢和年龄相关疾病的成像生物标志物
- 批准号:
10707354 - 财政年份:2022
- 资助金额:
$ 9.08万 - 项目类别: