Elucidating the gating mechanisms of bacterial mechanosensitive channels
阐明细菌机械敏感通道的门控机制
基本信息
- 批准号:10583324
- 负责人:
- 金额:$ 49.01万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-01-01 至 2026-11-30
- 项目状态:未结题
- 来源:
- 关键词:AdoptedAffectAnacystisnidulansAntibioticsBacteriaBindingBiological ProcessCancerousCarbonCellsChimeric ProteinsComplementCryoelectron MicroscopyCyclic AMPCyclic NucleotidesCytolysisDiameterDrug Delivery SystemsElectrophysiology (science)EnvironmentEquilibriumEscherichia coliEukaryotaExposure toFamilyGadoliniumHearingHumanIncubatedIonsLengthLifeLigand BindingLipidsLysophospholipidsMapsMembraneMolecularMolecular ConformationNanotechnologyOsmosisPathogenicityPathway interactionsPharmaceutical PreparationsPlayProbabilityProkaryotic CellsProteinsReactionResolutionRoleSensory ProcessStressStructureStyrenesSynechocystisTestingTissuesTouch sensationVisualizationWorkbeta-Cyclodextrinsblood pressure regulationcopolymercyclic-nucleotide gated ion channelsdesensitizationfallsfollow-upimaging agentinsightmaleic acidmechanical forcemechanical stimulusmembermolecular dynamicsmutantnanonanodisknovelnovel antibiotic classparalogous geneparticlepatch clamppressurereconstitutionresponse
项目摘要
Mechanosensitive (MS) channels sense and respond to mechanical forces by opening an ion-conducting
pathway. MS channels are found in all kingdoms of life, and in humans play essential roles in a number of
sensory processes, including hearing, the sense of touch, balance and regulation of blood pressure. The first
MS channels likely evolved in early prokaryotes as protection from hypoosmotic stress. Because bacterial MS
channels are ubiquitously expressed in bacteria, but not in humans, and because their uncontrolled opening has
a deleterious and often lethal effect on the bacteria, presumably due to the loss of important metabolites, bacterial
MS channels are intriguing targets for developing novel antibiotics. Bacteria express two types of MS channels,
MS channels of large conductance (MscL) and MS channels of small conductance (MscS). Members of the MscL
family are highly conserved and MscL has become a paradigm for the understanding of MS channels because
of its simplicity and amenability to different experimental approaches. MscS channels are more diverse, and
bacteria often express more than one paralog. Both bacterial MS channels are gated based on the ‘force-from-
lipids’ principle and respond to the transmembrane pressure profile of the surrounding membrane. However,
even though structures are available for MscL and MscS in different functional states, the mechanism by which
membrane tension opens these channels has remained enigmatic. We have recently determined cryo-electron
microscopy (cryo-EM) structures of MscS in different membrane environments, provided by nanodiscs, including
one mimicking a membrane under tension. The structures, complemented by molecular dynamics (MD)
simulations and electrophysiological studies, allowed us to visualize the channel in different functional states and
to deduce what roles lipids associated with MscS play in mechanosensation. We will continue to use a
combination of single-particle cryo-EM, patch-clamp electrophysiology and MD simulations to study the structure
and gating of bacterial MS channels. In Aim 1, we will continue to explore the function of lipids in MscS function,
in particular whether it adopts a defined open conformation in a native lipid environment, how modulators affect
MscS by changing its lipid environment, and whether 16-carbon acyl chains play a specific role in MscS gating.
In Aim 2, we will expand our studies to bacterial cyclic nucleotide-gated (bCNG) channels to elucidate how the
MscS fold was adapted to make the channel respond to cAMP binding rather than membrane tension. Aim 3 will
focus on MscL. We will determine the structure of MscL in a native lipid environment to confirm (or disprove) the
existence of lipid-filled nano-pockets that were suggested to play a critical role in gating. Finally, we will determine
the structure of MscL opened by different effectors to visualize the structure of this channel in the open state and
to test our hypothesis that different effectors result in open conformations with different pore diameters. The
results of these studies will not only provide new insights into the gating mechanism of bacterial MS channels,
but also help in exploiting these channels for biomedical applications.
机械敏感 (MS) 通道通过打开离子传导通道来感知机械力并做出响应
MS 通道存在于所有生命领域,并且在人类的许多方面发挥着重要作用。
感觉过程,包括听觉、触觉、平衡和血压调节。
MS 通道可能是在早期原核生物中进化出来的,因为细菌 MS 可以保护免受低渗应激。
通道在细菌中普遍表达,但在人类中却不然,因为它们不受控制的开放
对细菌产生有害且通常致命的影响,可能是由于重要代谢物、细菌的损失
MS 通道是开发新型抗生素的有趣目标细菌表达两种类型的 MS 通道,
大电导 MS 通道 (MscL) 和小电导 MS 通道 (MscS)。
家族高度保守,MscL 已成为理解 MS 通道的范例,因为
它的简单性和对不同实验方法的适应性更加多样化,并且
细菌通常表达多个旁系同源物,这两种细菌 MS 通道均基于“力”进行门控。
脂质的原理并对周围膜的跨膜压力曲线做出反应。
尽管结构可用于处于不同功能状态的 MscL 和 MscS,但其机制
膜张力打开这些通道仍然是个谜。我们最近确定了低温电子。
由纳米圆盘提供的不同膜环境中 MscS 的显微镜(冷冻电镜)结构,包括
一种模拟张力下膜的结构,并辅以分子动力学 (MD)。
模拟和电生理学研究使我们能够可视化不同功能状态下的通道
为了推断与 MscS 相关的脂质在机械感觉中的作用,我们将继续使用
结合单颗粒冷冻电镜、膜片钳电生理学和 MD 模拟来研究结构
和细菌 MS 通道的门控 在目标 1 中,我们将继续探索脂质在 MScS 功能中的作用,
特别是它是否在天然环境脂质中采用明确的开放构象,调节剂如何影响
MScS通过改变其脂质环境,以及16碳酰基链是否在MscS门控中发挥特定作用。
在目标 2 中,我们将研究扩展到细菌环核苷酸门控 (bCNG) 通道,以阐明细菌如何
MscS 折叠经过调整,使通道对 cAMP 结合而不是 Aim 3 的膜张力做出反应。
我们将重点关注 MscL 在天然脂质环境中的结构,以证实(或反驳)这一点。
脂质填充纳米袋的存在被认为在门控中发挥着关键作用。最后,我们将确定。
由不同效应器打开的 MscL 结构,以可视化该通道在打开状态下的结构
检验我们的假设,即不同的效应器会导致具有不同孔径的开放构象。
这些研究结果不仅将为细菌MS通道的门控机制提供新的见解,
而且还有助于利用这些渠道进行生物医学应用。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
THOMAS WALZ其他文献
THOMAS WALZ的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('THOMAS WALZ', 18)}}的其他基金
Elucidating the gating mechanisms of bacterial mechanosensitive channels
阐明细菌机械敏感通道的门控机制
- 批准号:
10796256 - 财政年份:2023
- 资助金额:
$ 49.01万 - 项目类别:
Structural and functional studies of urea channels
尿素通道的结构和功能研究
- 批准号:
8019537 - 财政年份:2008
- 资助金额:
$ 49.01万 - 项目类别:
Structural and functional studies of urea channels
尿素通道的结构和功能研究
- 批准号:
7351221 - 财政年份:2008
- 资助金额:
$ 49.01万 - 项目类别:
Structural and functional studies of urea channels
尿素通道的结构和功能研究
- 批准号:
7555922 - 财政年份:2008
- 资助金额:
$ 49.01万 - 项目类别:
Structural and functional studies of urea channels
尿素通道的结构和功能研究
- 批准号:
7762749 - 财政年份:2008
- 资助金额:
$ 49.01万 - 项目类别:
Structure and Function of Lens Membrane Proteins
晶状体膜蛋白的结构和功能
- 批准号:
7342072 - 财政年份:2004
- 资助金额:
$ 49.01万 - 项目类别:
Structure and Function of Lens Membrane Proteins
晶状体膜蛋白的结构和功能
- 批准号:
7171776 - 财政年份:2004
- 资助金额:
$ 49.01万 - 项目类别:
相似国自然基金
TiC-TiB2颗粒喷射成形原位合成及其对M2高速工具钢共晶碳化物形成与演化的影响
- 批准号:52361020
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
植被群落演替对河道水流结构和纵向离散特性影响机制研究
- 批准号:52309088
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
热带印度洋海表皮温日变化的数值模拟及对海气热通量的影响
- 批准号:42376002
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
SGO2/MAD2互作调控肝祖细胞的细胞周期再进入影响急性肝衰竭肝再生的机制研究
- 批准号:82300697
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
协同遥感和气候模型的城市高温热浪时空特征及其对热暴露影响研究
- 批准号:42371397
- 批准年份:2023
- 资助金额:46 万元
- 项目类别:面上项目
相似海外基金
RII Track-4:NSF: From the Ground Up to the Air Above Coastal Dunes: How Groundwater and Evaporation Affect the Mechanism of Wind Erosion
RII Track-4:NSF:从地面到沿海沙丘上方的空气:地下水和蒸发如何影响风蚀机制
- 批准号:
2327346 - 财政年份:2024
- 资助金额:
$ 49.01万 - 项目类别:
Standard Grant
BRC-BIO: Establishing Astrangia poculata as a study system to understand how multi-partner symbiotic interactions affect pathogen response in cnidarians
BRC-BIO:建立 Astrangia poculata 作为研究系统,以了解多伙伴共生相互作用如何影响刺胞动物的病原体反应
- 批准号:
2312555 - 财政年份:2024
- 资助金额:
$ 49.01万 - 项目类别:
Standard Grant
How Does Particle Material Properties Insoluble and Partially Soluble Affect Sensory Perception Of Fat based Products
不溶性和部分可溶的颗粒材料特性如何影响脂肪基产品的感官知觉
- 批准号:
BB/Z514391/1 - 财政年份:2024
- 资助金额:
$ 49.01万 - 项目类别:
Training Grant
Role of intestinal serotonin transporter in post traumatic stress disorder
肠道血清素转运蛋白在创伤后应激障碍中的作用
- 批准号:
10590033 - 财政年份:2024
- 资助金额:
$ 49.01万 - 项目类别:
Uncovering Mechanisms of Racial Inequalities in ADRD: Psychosocial Risk and Resilience Factors for White Matter Integrity
揭示 ADRD 中种族不平等的机制:心理社会风险和白质完整性的弹性因素
- 批准号:
10676358 - 财政年份:2024
- 资助金额:
$ 49.01万 - 项目类别: