Highly Integrated Nucleic-Acid Analysis Using Graphene Bioelectronics
使用石墨烯生物电子学进行高度集成的核酸分析
基本信息
- 批准号:10584520
- 负责人:
- 金额:$ 18.99万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-04-01 至 2024-12-31
- 项目状态:已结题
- 来源:
- 关键词:AffinityAnimal ModelBiological AssayBiological MarkersBiopsyBiopsy SpecimenBlindedBuffersClinicalClinical TrialsComplexConsumptionCore FacilityDNADNA ProbesDevelopmentDevicesDiagnosisDiagnosticDiseaseDisease ProgressionElectrodesElectronicsGenerationsGenomicsGoalsHospitalsHourImmunoassayInterventionInvestigationMeasurableMeasuresMicroRNAsMonitorMusNoninfiltrating Intraductal CarcinomaNucleic AcidsOligonucleotidesOperative Surgical ProceduresOutcomePathway interactionsPatientsPerformancePlasmaPopulationPrognosisProgressive DiseasePropertyPublic HealthReactionRecurrenceResearchRisk AssessmentSamplingSignal PathwaySignal TransductionTechnologyTestingTherapeuticTimeTransducersTransistorsTranslatingTranslational ResearchValidationVisitXenograft Modelbioelectronicsbreast cancer progressioncirculating microRNAclinical careclinical translationcohortcostdetection limitdiagnostic technologiesdisease diagnosisearly screeninggenomic predictorsgraphenehuman subjectimprovedindividualized medicineliquid biopsymalignant breast neoplasmmicro-total analysis systemmouse modelnew therapeutic targetnext generationoutcome predictionovertreatmentpH gradientpoint of carepoint-of-care diagnosispre-clinicalpreventprognosticprogramsresponsescreeningsensortargeted treatmenttechnology platformtechnology validationtreatment responsetreatment strategyuser-friendlyvoltage
项目摘要
PROJECT SUMMARY
The circulating population of microRNAs in biofluids are ideal biomarkers for various diseases. Point-of-care
profiling of circulating microRNAs is in insatiable demand, but typical approaches, e.g., immunoassays and
microRNA assays are lab-based/centralized, expensive ($400–1,000/test), and time-consuming (>6 hours). We
will develop a highly integrated, all-nanobioelectronic platform technology for multiplex, high-accuracy
circulating-microRNA analysis that is capable of profiling circulating microRNAs in a 50-μL plasma with ultra-
high sensitivity (sub-fM) and efficiencies in time (<40 minutes) and cost (<$10/test), thereby enabling high-
performance circulating-microRNA analysis at the point of test. The novelty of the program is to harness
graphene-based bioelectronics to integrate circulating microRNA isolation, concentration, amplification, and
quantification into a self-contained device. In order to proof the concept of this technology, the program will
include the development and validation of two generations of graphene-based analytical platforms, GAP1 and
GAP2. Three specific aims with measurable milestones will be pursued. (1) We will demonstrate that multiple
microRNA analytes can be amplified via hybridization chain reaction on a probe-functionalized graphene sensor
array and the analyte concentrations can be readily interrogated by the graphene sensor array and translated
into electrical signals. We will develop GAP1 to selectively quantify eight pre-selected target microRNAs
(MDCIS8) spiked in 5-μL buffer. The detection limit of the specific microRNAs is expected to be at fM level. (2)
We will demonstrate that target circulating microRNAs can be isolated from plasma by immobilizing them on a
DNA-functionalized graphene electrode and releasing them into a small-volume simple cargo solution upon the
generation of pH gradient by applying voltage bias between the graphene-DNA electrode with a bare graphene
electrode. We will develop a graphene-based circulating-microRNA isolation module, combine the module with
GAP1 to form GAP2, and use GAP2 to profile circulating MDCIS8 in lysed samples of 50-μL plasma from NSG
mice. The GAP2 is expected to concentrate the microRNAs by >5× and deliver sub-fM level sensitivity. (3) We
will demonstrate the feasibility of using this platform technology for diagnostic applications. We will use GAP2 to
quantify circulating MDCIS8, whose expression levels are indicative to pre-invasive breast cancer, in 50-μL
plasma samples from a user blinded cohort of the MIND murine model. The profiling result will be analyzed to
predict the progression of pre-invasive breast cancer whose rapid, inexpensive diagnosis remains a challenge.
The GAP2 prediction outcome will be combined with that based on surgical biopsy to establish the accuracy of
the technology for progression prediction. The expected prediction accuracy is >96%. If successful, the
technology will offer a new pathway to next-generation point-of-care genomic diagnostic/prognostic micro total
analysis systems that would be cheap enough and user friendly enough to be used in various clinical settings.
项目概要
生物体液中循环的 microRNA 群体是各种疾病的理想生物标志物。
对循环 microRNA 的分析有着无法满足的需求,但典型的方法,例如免疫分析和
microRNA 测定是基于实验室/集中化的、昂贵的(每次测试 400-1,000 美元)且耗时(> 6 小时)。
将开发高度集成的全纳米生物电子平台技术,用于多重、高精度
循环 microRNA 分析,能够分析 50 µL 血浆中的循环 microRNA
高灵敏度(sub-fM)以及时间效率(<40 分钟)和成本(<10 美元/测试),从而实现高
该程序的新颖之处在于利用了测试时的循环 microRNA 分析。
基于石墨烯的生物电子学,集成循环 microRNA 分离、浓缩、扩增和
为了证明这项技术的概念,该程序将量化成一个独立的设备。
包括两代基于石墨烯的分析平台 GAP1 和
GAP2. 将追求三个具有可衡量里程碑的具体目标 (1) 我们将证明多个目标。
microRNA 分析物可以通过探针功能化石墨烯传感器上的杂交链式反应进行扩增
阵列和分析物浓度可以很容易地通过石墨烯传感器阵列询问并转换
我们将开发 GAP1 来选择性地量化八种预先选定的目标 microRNA。
(MDCIS8) 加标于 5 µL 缓冲液中,预计特定 microRNA 的检测限为 fM 水平 (2)。
我们将证明,通过将目标循环 microRNA 固定在血浆上,可以将其从血浆中分离出来。
DNA 功能化的石墨烯电极,并将其释放到小体积的简单货物溶液中
通过在石墨烯-DNA 电极与裸石墨烯之间施加偏压来产生 pH 梯度
我们将开发一种基于石墨烯的循环microRNA分离模块,将该模块与电极结合起来。
GAP1 形成 GAP2,并使用 GAP2 分析来自 NSG 的 50 μL 血浆裂解样品中的循环 MDCIS8
GAP2 预计可将 microRNA 浓缩 >5 倍并提供亚 fM 水平的敏感性 (3) 我们。
我们将展示使用该平台技术进行诊断应用的可行性。
定量 50 µL 循环 MDCIS8,其表达水平指示浸润前乳腺癌
来自 MIND 小鼠模型的用户盲态队列的血浆样本将被分析以分析分析结果。
预测浸润前乳腺癌的进展,其快速、廉价的诊断仍然是一个挑战。
GAP2 预测结果将与基于手术活检的结果相结合,以确定 GAP2 预测结果的准确性
进展预测技术的预期预测准确度> 96%。
技术将为下一代护理点基因组诊断/预后微总数提供新途径
分析系统足够便宜且用户友好,可用于各种临床环境。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jinglei Ping其他文献
Jinglei Ping的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jinglei Ping', 18)}}的其他基金
Cell Control via Spatiotemporal Microenvironmental pH Modulation
通过时空微环境 pH 调节进行细胞控制
- 批准号:
10713388 - 财政年份:2023
- 资助金额:
$ 18.99万 - 项目类别:
Highly Integrated Nucleic-Acid Analysis Using Graphene Bioelectronics
使用石墨烯生物电子学进行高度集成的核酸分析
- 批准号:
10372664 - 财政年份:2022
- 资助金额:
$ 18.99万 - 项目类别:
相似国自然基金
髋关节撞击综合征过度运动及机械刺激动物模型建立与相关致病机制研究
- 批准号:82372496
- 批准年份:2023
- 资助金额:48 万元
- 项目类别:面上项目
基于中医经典名方干预效应差异的非酒精性脂肪性肝病动物模型证候判别研究
- 批准号:
- 批准年份:2022
- 资助金额:53 万元
- 项目类别:面上项目
利用肝癌动物模型开展化学可控的在体基因编辑体系的研究
- 批准号:
- 批准年份:2022
- 资助金额:54 万元
- 项目类别:面上项目
雌激素抑制髓系白血病动物模型中粒细胞异常增生的机制
- 批准号:
- 批准年份:2022
- 资助金额:52 万元
- 项目类别:面上项目
无菌动物模型与单细胞拉曼技术结合的猴与人自闭症靶标菌筛选及其机制研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Human CMV monoclonal antibodies as therapeutics to inhibit virus infection and dissemination
人 CMV 单克隆抗体作为抑制病毒感染和传播的治疗药物
- 批准号:
10867639 - 财政年份:2023
- 资助金额:
$ 18.99万 - 项目类别:
Optical platform for functional longitudinal imaging of metabolite uptake in vivo
用于体内代谢物摄取功能纵向成像的光学平台
- 批准号:
10585764 - 财政年份:2023
- 资助金额:
$ 18.99万 - 项目类别:
Small Molecule Therapeutics for Sickle Cell Anemia
镰状细胞性贫血的小分子疗法
- 批准号:
10601679 - 财政年份:2023
- 资助金额:
$ 18.99万 - 项目类别: