Highly Integrated Nucleic-Acid Analysis Using Graphene Bioelectronics
使用石墨烯生物电子学进行高度集成的核酸分析
基本信息
- 批准号:10584520
- 负责人:
- 金额:$ 18.99万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-04-01 至 2024-12-31
- 项目状态:已结题
- 来源:
- 关键词:AffinityAnimal ModelBiological AssayBiological MarkersBiopsyBiopsy SpecimenBlindedBuffersClinicalClinical TrialsComplexConsumptionCore FacilityDNADNA ProbesDevelopmentDevicesDiagnosisDiagnosticDiseaseDisease ProgressionElectrodesElectronicsGenerationsGenomicsGoalsHospitalsHourImmunoassayInterventionInvestigationMeasurableMeasuresMicroRNAsMonitorMusNoninfiltrating Intraductal CarcinomaNucleic AcidsOligonucleotidesOperative Surgical ProceduresOutcomePathway interactionsPatientsPerformancePlasmaPopulationPrognosisProgressive DiseasePropertyPublic HealthReactionRecurrenceResearchRisk AssessmentSamplingSignal PathwaySignal TransductionTechnologyTestingTherapeuticTimeTransducersTransistorsTranslatingTranslational ResearchValidationVisitXenograft Modelbioelectronicsbreast cancer progressioncirculating microRNAclinical careclinical translationcohortcostdetection limitdiagnostic technologiesdisease diagnosisearly screeninggenomic predictorsgraphenehuman subjectimprovedindividualized medicineliquid biopsymalignant breast neoplasmmicro-total analysis systemmouse modelnew therapeutic targetnext generationoutcome predictionovertreatmentpH gradientpoint of carepoint-of-care diagnosispre-clinicalpreventprognosticprogramsresponsescreeningsensortargeted treatmenttechnology platformtechnology validationtreatment responsetreatment strategyuser-friendlyvoltage
项目摘要
PROJECT SUMMARY
The circulating population of microRNAs in biofluids are ideal biomarkers for various diseases. Point-of-care
profiling of circulating microRNAs is in insatiable demand, but typical approaches, e.g., immunoassays and
microRNA assays are lab-based/centralized, expensive ($400–1,000/test), and time-consuming (>6 hours). We
will develop a highly integrated, all-nanobioelectronic platform technology for multiplex, high-accuracy
circulating-microRNA analysis that is capable of profiling circulating microRNAs in a 50-μL plasma with ultra-
high sensitivity (sub-fM) and efficiencies in time (<40 minutes) and cost (<$10/test), thereby enabling high-
performance circulating-microRNA analysis at the point of test. The novelty of the program is to harness
graphene-based bioelectronics to integrate circulating microRNA isolation, concentration, amplification, and
quantification into a self-contained device. In order to proof the concept of this technology, the program will
include the development and validation of two generations of graphene-based analytical platforms, GAP1 and
GAP2. Three specific aims with measurable milestones will be pursued. (1) We will demonstrate that multiple
microRNA analytes can be amplified via hybridization chain reaction on a probe-functionalized graphene sensor
array and the analyte concentrations can be readily interrogated by the graphene sensor array and translated
into electrical signals. We will develop GAP1 to selectively quantify eight pre-selected target microRNAs
(MDCIS8) spiked in 5-μL buffer. The detection limit of the specific microRNAs is expected to be at fM level. (2)
We will demonstrate that target circulating microRNAs can be isolated from plasma by immobilizing them on a
DNA-functionalized graphene electrode and releasing them into a small-volume simple cargo solution upon the
generation of pH gradient by applying voltage bias between the graphene-DNA electrode with a bare graphene
electrode. We will develop a graphene-based circulating-microRNA isolation module, combine the module with
GAP1 to form GAP2, and use GAP2 to profile circulating MDCIS8 in lysed samples of 50-μL plasma from NSG
mice. The GAP2 is expected to concentrate the microRNAs by >5× and deliver sub-fM level sensitivity. (3) We
will demonstrate the feasibility of using this platform technology for diagnostic applications. We will use GAP2 to
quantify circulating MDCIS8, whose expression levels are indicative to pre-invasive breast cancer, in 50-μL
plasma samples from a user blinded cohort of the MIND murine model. The profiling result will be analyzed to
predict the progression of pre-invasive breast cancer whose rapid, inexpensive diagnosis remains a challenge.
The GAP2 prediction outcome will be combined with that based on surgical biopsy to establish the accuracy of
the technology for progression prediction. The expected prediction accuracy is >96%. If successful, the
technology will offer a new pathway to next-generation point-of-care genomic diagnostic/prognostic micro total
analysis systems that would be cheap enough and user friendly enough to be used in various clinical settings.
项目摘要
生物流体中的microRNA循环种群是各种疾病的理想生物标志物。护理点
循环microRNA的分析是无法满足的需求,但典型的方法,例如免疫测定和
MicroRNA测定基于实验室/集中式,昂贵(400-1,000美元/测试)和耗时(> 6小时)。我们
将开发一种高度集成的全纳米电代理平台技术,用于多重,高临界性
循环中的微生纳分析能够分析50μl血浆中循环microRNA,
高灵敏度(sub-fm)和效率的时间(<40分钟)和成本(<$ 10/测试),从而使高
测试点的性能循环 - 微洋分析。该计划的新颖性是要利用
基于石墨烯的生物电子学以整合循环的microRNA隔离,浓度,扩增和
数量成一个独立设备。为了证明这项技术的概念,该计划将
包括两代基于石墨烯的分析平台的开发和验证,GAP1和
GAP2。将实现三个特定目标,以可衡量的里程碑。 (1)我们将证明这是多个
MicroRNA分析物可以通过探针功能化石墨烯传感器上的杂交链反应扩增
阵列和分析物浓度很容易被石墨烯传感器阵列询问并翻译
进入电信号。我们将开发GAP1以选择性量化八个预选的目标microRNA
(MDCIS8)在5μl缓冲液中升高。特定microRNA的检测极限预计在FM水平上。 (2)
我们将证明,可以通过将它们固定在A上来隔离等离子体。
DNA官能化石墨烯电极,并将其释放到小体积的简单货物溶液中
通过用裸石石墨烯在石墨烯-DNA电极之间施加电压偏置来产生pH梯度
电极。我们将开发一个基于石墨烯的循环丝菌隔离模块,将模块与
GAP1形成GAP2,并使用GAP2在NSG的50μl等离子体的裂解样品中介绍循环的MDCIS8
老鼠。 GAP2预计将以> 5倍的浓度将microRNA浓缩,并提供次-FM水平敏感性。 (3)我们
将证明将此平台技术用于诊断应用的可行性。我们将使用GAP2来
量化循环的mDCIS8,其表达水平在50μl中表示为侵入性乳腺癌
来自用户盲鼠模型的用户盲人队列的等离子体样本。分析结果将进行分析
预测侵入性乳腺癌的进展,其快速,廉价的诊断仍然是一个挑战。
GAP2预测结果将基于手术活检,以确定的准确性
进展预测的技术。预期的预测准确性> 96%。如果成功,
技术将为下一代医疗点基因组诊断/预后微型总计提供新的途径
分析系统足够便宜且用户友好,足以在各种临床环境中使用。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jinglei Ping其他文献
Jinglei Ping的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jinglei Ping', 18)}}的其他基金
Cell Control via Spatiotemporal Microenvironmental pH Modulation
通过时空微环境 pH 调节进行细胞控制
- 批准号:
10713388 - 财政年份:2023
- 资助金额:
$ 18.99万 - 项目类别:
Highly Integrated Nucleic-Acid Analysis Using Graphene Bioelectronics
使用石墨烯生物电子学进行高度集成的核酸分析
- 批准号:
10372664 - 财政年份:2022
- 资助金额:
$ 18.99万 - 项目类别:
相似国自然基金
髋关节撞击综合征过度运动及机械刺激动物模型建立与相关致病机制研究
- 批准号:82372496
- 批准年份:2023
- 资助金额:48 万元
- 项目类别:面上项目
利用碱基编辑器治疗肥厚型心肌病的动物模型研究
- 批准号:82300396
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
利用小型猪模型评价动脉粥样硬化易感基因的作用
- 批准号:32370568
- 批准年份:2023
- 资助金额:50.00 万元
- 项目类别:面上项目
丁苯酞通过调节细胞异常自噬和凋亡来延缓脊髓性肌萎缩症动物模型脊髓运动神经元的丢失
- 批准号:82360332
- 批准年份:2023
- 资助金额:31.00 万元
- 项目类别:地区科学基金项目
APOBEC3A驱动膀胱癌发生发展的动物模型及其机制研究
- 批准号:82303057
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
相似海外基金
Human CMV monoclonal antibodies as therapeutics to inhibit virus infection and dissemination
人 CMV 单克隆抗体作为抑制病毒感染和传播的治疗药物
- 批准号:
10867639 - 财政年份:2023
- 资助金额:
$ 18.99万 - 项目类别:
Optical platform for functional longitudinal imaging of metabolite uptake in vivo
用于体内代谢物摄取功能纵向成像的光学平台
- 批准号:
10585764 - 财政年份:2023
- 资助金额:
$ 18.99万 - 项目类别:
Small Molecule Therapeutics for Sickle Cell Anemia
镰状细胞性贫血的小分子疗法
- 批准号:
10601679 - 财政年份:2023
- 资助金额:
$ 18.99万 - 项目类别: