Cell Control via Spatiotemporal Microenvironmental pH Modulation
通过时空微环境 pH 调节进行细胞控制
基本信息
- 批准号:10713388
- 负责人:
- 金额:$ 37.92万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-20 至 2028-08-31
- 项目状态:未结题
- 来源:
- 关键词:AddressAdvanced DevelopmentBehaviorBicarbonatesBiomedical EngineeringBuffersCarbon DioxideCardiacCardiac MyocytesCardiovascular systemCell modelCell physiologyCellsCellular biologyChemicalsCommunicationDevelopmentDevicesDiffusionDrug Delivery SystemsFailureGoalsMalignant NeoplasmsMetabolismMethodsMicroelectrodesMicroscopicMissionMorphogenesisMorphologyOpticsOutcomePathogenesisPositioning AttributePropertyPublic HealthReaction TimeRegenerative MedicineRegulationResolutionSignal TransductionSystemTechniquesTestingTherapeuticTimeTissue EngineeringTransducersUnited States National Institutes of Healthanti-cancercell behaviordisabilitygrapheneimprovedmeternanomaterialsneoplastic cellpH gradientspatiotemporaltooltwo-dimensional
项目摘要
Microenvironmental pH is a key factor in cell functioning and pathogenesis. To control the function and behavior
of cells by modulating pH microenvironments is critical to advancing the development of cell biology and tissue
engineering and enabling applications in drug delivery and regenerative medicine. However, pH-based cell
control remains a challenge due to the lack of means to real-time, spatioselective modulation of
microenvironmental pH. While pH microenvironments in cell systems are highly heterogeneous in time and
space, known pH-modulation methods are through CO2/HCO3− buffering and H+ diffusion, which are slow,
isotropic, and nonspecific. An urgent need, therefore, is to modulate pH microenvironments in a spatiotemporally
specific manner. Failure to do so means that pH, an essential factor that determines cell fate and function, is not
in good control. The PI’s long-term goal is microenvironmental pH–based closed-loop regulation of cell function,
metabolism, and morphogenesis. The overall goal of this project, a critical step towards the long-term goal, is to
control cells by real-time, spatioselective modulation of pH microenvironments. The hypothesis is that cell
function and behavior can be regulated with ultra-high spatiotemporal resolutions (10–100 µm, <50 s), compared
to conventional, diffusion-based methods (>103 µm, >103 s), in pH microenvironments that are modulated
nanoelectrochemically by microelectrodes based on graphene, a two-dimensional nanomaterial with unique
outstanding bio-transduction properties that address the primary challenge of on-chip pH modulation of living
cell systems for typical microelectrode materials. The approach to test this hypothesis is to quantify real-time
responses of model cell systems to arrayed pH microenvironment generated by an array of bidirectional
graphene-microelectrode transducers that are optically transparent to allow microscopic characterization and
communicate with cellular systems through electrical signal interrogation and rapid nanoelectrochemical
microenvironmental-pH modulation. The following milestone goals will be reached in this project: (1) to create
densely arrayed pH microenvironment by developing an array of bidirectional graphene-microelectrode
transducers and (2) to control the function and behavior of model cell systems (cardiomyocytes and tumor cells)
via spatiotemporal microenvironmental pH modulation using the graphene transducer array. The PI is uniquely
positioned to conduct the project due to the ability of the PI’s lab to create graphene microelectrodes integrable
in a fluidic device for interfacing cellular systems, interrogating electrical/chemical cell signals, and controlling
cell behavior by generating microscale pH gradients. To harness and combine these techniques allows the
development of arrays of bidirectional graphene transducers for selective, real-time pH-microenvironment
modulation and cell control. The expected outcome of the project is pH-based cell-control tools with over two-
orders-of-magnitude enhanced spatiotemporal resolutions compared to conventional methods. This outcome is
to generate positive impact on bioengineering development, regenerative medicine, and synthetic morphology.
微环境pH是细胞功能和发病机理的关键因素。控制功能和行为
通过调节pH微环境调节细胞对于推进细胞生物学和组织的发展至关重要
在药物输送和再生医学中的工程和启用。但是,基于pH的细胞
由于缺乏实时的,时空选择的调制,控制仍然是一个挑战
微环境PH。而细胞系统中的pH微环境在时间上是高度异质的,而
空间,已知的pH调节方法通过CO2/HCO3-缓冲和H+扩散,它们很慢
各向同性和非特异性。因此,迫切需要是在空间上调节pH微环境
具体方式。不这样做意味着pH是决定细胞命运和功能的重要因素,不是
很好地控制。 PI的长期目标是基于细胞功能的基于微环境的闭环调节,
代谢和形态发生。该项目的总体目标是朝着长期目标迈出的关键一步,是
通过实时的,pH微环境的时空选择性调节来控制细胞。假设是细胞
比较了超高时空分辨率(10-100 µm,<50 s),功能和行为可以调节
在调制的pH微环境中,传统的基于扩散的方法(> 103 µm,> 103 s)
基于石墨烯的微电极在纳米电子化学上,这是一种二维纳米材料,独特
出色的生物转变特性,该特性应对生活芯片pH调制的主要挑战
典型微电极材料的细胞系统。检验该假设的方法是量化实时
模型细胞系统对由双向阵列产生的阵列pH微环境的响应
石墨烯 - 微电极换能器在光学上透明以允许微观表征和
通过电信号询问和快速纳米电化学与细胞系统通信
微环境-PH调制。该项目将实现以下里程碑目标:(1)创建
通过开发一系列双向石墨烯 - 微电极,呈不良阵列的pH微环境
传感器和(2)控制模型细胞系统的功能和行为(心肌细胞和肿瘤细胞)
通过使用石墨烯传感器阵列的时空微环境pH调制。 PI是独特的
由于PI实验室能够创建石墨烯微电极可集成的能力,因此可以进行项目
在用于接口细胞系统的流体设备中,询问电气/化学细胞信号并控制
通过产生微观pH梯度来通过细胞行为。利用和结合这些技术允许
开发用于选择性的实时pH-微环境的双向石墨烯传感器的阵列
调节和细胞控制。该项目的预期结果是基于pH的细胞控制工具,具有超过两种的工具
与常规方法相比,稳定阶的时空分辨率增强了。这个结果是
对生物工程开发,再生医学和合成形态产生积极影响。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jinglei Ping其他文献
Jinglei Ping的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jinglei Ping', 18)}}的其他基金
Highly Integrated Nucleic-Acid Analysis Using Graphene Bioelectronics
使用石墨烯生物电子学进行高度集成的核酸分析
- 批准号:
10372664 - 财政年份:2022
- 资助金额:
$ 37.92万 - 项目类别:
Highly Integrated Nucleic-Acid Analysis Using Graphene Bioelectronics
使用石墨烯生物电子学进行高度集成的核酸分析
- 批准号:
10584520 - 财政年份:2022
- 资助金额:
$ 37.92万 - 项目类别:
相似国自然基金
CTCF通过介导染色质高级结构调控非小细胞肺癌发生发展的机制研究
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
CTCF通过介导染色质高级结构调控非小细胞肺癌发生发展的机制研究
- 批准号:32100463
- 批准年份:2021
- 资助金额:24.00 万元
- 项目类别:青年科学基金项目
发展高级固体核磁方法探索功能材料的表界面化学
- 批准号:21922410
- 批准年份:2019
- 资助金额:120 万元
- 项目类别:优秀青年科学基金项目
TACSTD2在卵巢高级别浆液性癌发生发展中的作用及分子机制研究
- 批准号:81402157
- 批准年份:2014
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Advancing the Conversations Helpful for Awareness of Illness Trajectory (CHAT) Intervention
推进对话有助于提高疾病轨迹 (CHAT) 干预意识
- 批准号:
10668058 - 财政年份:2023
- 资助金额:
$ 37.92万 - 项目类别:
Early life stress impacts molecular and network properties that bias the recruitment of pro-stress BLA circuits
早期生活压力会影响分子和网络特性,从而影响促压力 BLA 回路的募集
- 批准号:
10820820 - 财政年份:2023
- 资助金额:
$ 37.92万 - 项目类别:
Dissecting the functional organization of local hippocampal circuits underlying spatial representations
剖析空间表征下局部海马回路的功能组织
- 批准号:
10590363 - 财政年份:2023
- 资助金额:
$ 37.92万 - 项目类别:
Using Functional Neuroimaging and Smartphone Digital Phenotyping to Understand the Emergence of Internalizing Illness
使用功能神经影像和智能手机数字表型来了解内化疾病的出现
- 批准号:
10749114 - 财政年份:2023
- 资助金额:
$ 37.92万 - 项目类别:
Mentoring the next generation of researchers at the intersection of opioid use disorder and chronic pain
指导下一代研究人员研究阿片类药物使用障碍和慢性疼痛的交叉点
- 批准号:
10663642 - 财政年份:2023
- 资助金额:
$ 37.92万 - 项目类别: