Cell Control via Spatiotemporal Microenvironmental pH Modulation
通过时空微环境 pH 调节进行细胞控制
基本信息
- 批准号:10713388
- 负责人:
- 金额:$ 37.92万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-20 至 2028-08-31
- 项目状态:未结题
- 来源:
- 关键词:AddressAdvanced DevelopmentBehaviorBicarbonatesBiomedical EngineeringBuffersCarbon DioxideCardiacCardiac MyocytesCardiovascular systemCell modelCell physiologyCellsCellular biologyChemicalsCommunicationDevelopmentDevicesDiffusionDrug Delivery SystemsFailureGoalsMalignant NeoplasmsMetabolismMethodsMicroelectrodesMicroscopicMissionMorphogenesisMorphologyOpticsOutcomePathogenesisPositioning AttributePropertyPublic HealthReaction TimeRegenerative MedicineRegulationResolutionSignal TransductionSystemTechniquesTestingTherapeuticTimeTissue EngineeringTransducersUnited States National Institutes of Healthanti-cancercell behaviordisabilitygrapheneimprovedmeternanomaterialsneoplastic cellpH gradientspatiotemporaltooltwo-dimensional
项目摘要
Microenvironmental pH is a key factor in cell functioning and pathogenesis. To control the function and behavior
of cells by modulating pH microenvironments is critical to advancing the development of cell biology and tissue
engineering and enabling applications in drug delivery and regenerative medicine. However, pH-based cell
control remains a challenge due to the lack of means to real-time, spatioselective modulation of
microenvironmental pH. While pH microenvironments in cell systems are highly heterogeneous in time and
space, known pH-modulation methods are through CO2/HCO3− buffering and H+ diffusion, which are slow,
isotropic, and nonspecific. An urgent need, therefore, is to modulate pH microenvironments in a spatiotemporally
specific manner. Failure to do so means that pH, an essential factor that determines cell fate and function, is not
in good control. The PI’s long-term goal is microenvironmental pH–based closed-loop regulation of cell function,
metabolism, and morphogenesis. The overall goal of this project, a critical step towards the long-term goal, is to
control cells by real-time, spatioselective modulation of pH microenvironments. The hypothesis is that cell
function and behavior can be regulated with ultra-high spatiotemporal resolutions (10–100 µm, <50 s), compared
to conventional, diffusion-based methods (>103 µm, >103 s), in pH microenvironments that are modulated
nanoelectrochemically by microelectrodes based on graphene, a two-dimensional nanomaterial with unique
outstanding bio-transduction properties that address the primary challenge of on-chip pH modulation of living
cell systems for typical microelectrode materials. The approach to test this hypothesis is to quantify real-time
responses of model cell systems to arrayed pH microenvironment generated by an array of bidirectional
graphene-microelectrode transducers that are optically transparent to allow microscopic characterization and
communicate with cellular systems through electrical signal interrogation and rapid nanoelectrochemical
microenvironmental-pH modulation. The following milestone goals will be reached in this project: (1) to create
densely arrayed pH microenvironment by developing an array of bidirectional graphene-microelectrode
transducers and (2) to control the function and behavior of model cell systems (cardiomyocytes and tumor cells)
via spatiotemporal microenvironmental pH modulation using the graphene transducer array. The PI is uniquely
positioned to conduct the project due to the ability of the PI’s lab to create graphene microelectrodes integrable
in a fluidic device for interfacing cellular systems, interrogating electrical/chemical cell signals, and controlling
cell behavior by generating microscale pH gradients. To harness and combine these techniques allows the
development of arrays of bidirectional graphene transducers for selective, real-time pH-microenvironment
modulation and cell control. The expected outcome of the project is pH-based cell-control tools with over two-
orders-of-magnitude enhanced spatiotemporal resolutions compared to conventional methods. This outcome is
to generate positive impact on bioengineering development, regenerative medicine, and synthetic morphology.
微环境pH值是细胞功能和发病机制中控制功能和行为的关键因素。
通过调节 pH 微环境来调节细胞对于促进细胞生物学和组织的发展至关重要
然而,基于 pH 的细胞在药物输送和再生医学中的工程和应用。
由于缺乏实时、空间选择性调制的手段,控制仍然是一个挑战
微环境 pH 值虽然细胞系统中的 pH 微环境在时间和时间上具有高度异质性。
空间,已知的 pH 调节方法是通过 CO2/HCO3− 缓冲和 H+ 扩散,这些方法很慢,
因此,迫切需要在时空上调节 pH 微环境。
如果不这样做,就意味着决定细胞命运和功能的重要因素 pH 值不存在。
PI 的长期目标是基于微环境 pH 值的细胞功能闭环调节,
该项目的总体目标是实现长期目标的关键一步。
通过实时、空间选择性调节 pH 微环境来控制细胞。
相比之下,功能和行为可以通过超高时空分辨率(10–100 µm,<50 s)进行调节
传统的基于扩散的方法(>103 µm,>103 s),在调节的 pH 微环境中
通过基于石墨烯的微电极进行纳米电化学,石墨烯是一种具有独特功能的二维纳米材料
出色的生物转导特性,可解决生物芯片上 pH 调节的主要挑战
测试这一假设的方法是实时量化。
模型细胞系统对由一系列双向阵列产生的阵列 pH 微环境的响应
石墨烯微电极传感器具有光学透明性,可以进行微观表征和
通过电信号询问和快速纳米电化学与细胞系统通信
该项目将达到以下里程碑目标:(1)创建微环境-pH调节。
通过开发双向石墨烯微电极阵列来形成密集排列的 pH 微环境
(2) 控制模型细胞系统(心肌细胞和肿瘤细胞)的功能和行为
通过使用石墨烯传感器阵列进行时空微环境 pH 调节,PI 是独一无二的。
由于 PI 实验室有能力制造可集成的石墨烯微电极,因此有能力开展该项目
在流体装置中用于连接细胞系统、询问电/化学细胞信号以及控制
通过产生微尺度 pH 梯度来控制细胞行为。利用和结合这些技术可以实现
开发用于选择性、实时 pH 微环境的双向石墨烯传感器阵列
该项目的预期成果是基于 pH 的细胞控制工具,具有超过两种功能:
与传统方法相比,这个结果提高了几个数量级的时空分辨率。
对生物工程发展、再生医学和合成形态学产生积极影响。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jinglei Ping其他文献
Jinglei Ping的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jinglei Ping', 18)}}的其他基金
Highly Integrated Nucleic-Acid Analysis Using Graphene Bioelectronics
使用石墨烯生物电子学进行高度集成的核酸分析
- 批准号:
10372664 - 财政年份:2022
- 资助金额:
$ 37.92万 - 项目类别:
Highly Integrated Nucleic-Acid Analysis Using Graphene Bioelectronics
使用石墨烯生物电子学进行高度集成的核酸分析
- 批准号:
10584520 - 财政年份:2022
- 资助金额:
$ 37.92万 - 项目类别:
相似国自然基金
减少编程错误:基于认证内核的全新的快捷依赖类型PiSigma高级编程语言开发
- 批准号:61070023
- 批准年份:2010
- 资助金额:30.0 万元
- 项目类别:面上项目
相似海外基金
Advancing the Conversations Helpful for Awareness of Illness Trajectory (CHAT) Intervention
推进对话有助于提高疾病轨迹 (CHAT) 干预意识
- 批准号:
10668058 - 财政年份:2023
- 资助金额:
$ 37.92万 - 项目类别:
Early life stress impacts molecular and network properties that bias the recruitment of pro-stress BLA circuits
早期生活压力会影响分子和网络特性,从而影响促压力 BLA 回路的募集
- 批准号:
10820820 - 财政年份:2023
- 资助金额:
$ 37.92万 - 项目类别:
Dissecting the functional organization of local hippocampal circuits underlying spatial representations
剖析空间表征下局部海马回路的功能组织
- 批准号:
10590363 - 财政年份:2023
- 资助金额:
$ 37.92万 - 项目类别:
Using Functional Neuroimaging and Smartphone Digital Phenotyping to Understand the Emergence of Internalizing Illness
使用功能神经影像和智能手机数字表型来了解内化疾病的出现
- 批准号:
10749114 - 财政年份:2023
- 资助金额:
$ 37.92万 - 项目类别:
Role of Phosphorylation in Determining Circadian Period Length and Temperature Compensation
磷酸化在确定昼夜节律长度和温度补偿中的作用
- 批准号:
10678253 - 财政年份:2023
- 资助金额:
$ 37.92万 - 项目类别: