Intelligent Intensive Care Unit (I2CU): Pervasive Sensing and Artificial Intelligence for Augmented Clinical Decision-making
智能重症监护病房 (I2CU):普遍传感和人工智能增强临床决策
基本信息
- 批准号:10580785
- 负责人:
- 金额:$ 60.06万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-04-01 至 2024-12-31
- 项目状态:已结题
- 来源:
- 关键词:AlgorithmsArtificial IntelligenceArtificial Intelligence platformAssessment toolCaringClinicalClinical DataClinical InformaticsClinical assessmentsCollaborationsColorCommunicationComplexComputing MethodologiesCritical CareCritical IllnessCuesDataData SetDecision MakingDeteriorationEarly DiagnosisEarly InterventionElectronic Health RecordEnvironmentEvaluationFacial ExpressionFosteringFoundationsFrequenciesGoalsHealth PersonnelHospital CostsHumanImageIntelligenceIntensive Care UnitsInterventionJudgmentLiteratureManualsMeasurementMedicalMedicineMissionModelingMonitorNursesOutcomePainPain MeasurementPatient AdmissionPatient-Focused OutcomesPatientsPhysical FunctionPhysiciansPhysiologicalPostureProcessProcess AssessmentPublic HealthReproducibilityResearchRisk AssessmentSamplingSystemTechnologyTestingTimeTrainingUnited StatesUnited States National Institutes of HealthVisualadvanced diseaseaugmented intelligenceclinical careclinical decision-makingclinical practiceclinical predictorscostdata sharingdeep learningdeep learning algorithmdeep learning modeldisease diagnosisemotional distressimprovedindexinginnovationnovelprediction algorithmpredictive toolsprospectiveprospective testrisk perceptionsatisfactionsensorsensor technologytoolvigilance
项目摘要
Project Summary
Although close monitoring and dynamic assessment of patient acuity are key aspects of ICU care, both are
limited by the time constraints imposed on healthcare providers. Currently, dynamic and precise assessment of
patient’s acuity in ICU rely almost exclusively on physicians’ clinical judgment and vigilance. Furthermore,
important visual assessment details, such as facial expressions, posture, and mobility, are captured
sporadically by overburdened nurses or are not captured at all. However, these visual assessment details are
associated with critical indices such as physical function, pain and subsequent clinical deterioration. The PIs’
long-term goal is to sense, quantify, and communicate patient’s clinical condition in an autonomous and
precise manner. The overall objective of this application is to develop the novel tools for sensing, quantifying,
and communicating any patient’s condition in an autonomous, precise, and interpretable manner. The central
hypothesis is that deep learning models will be superior to existing acuity clinical scores by predicting acuity in
a dynamic, precise, and interpretable manner, using autonomous assessment of pain, emotional distress and
physical function, together with clinical and physiologic data. The hypothesis has been formulated based on
preliminary data and is well-grounded in clinical care literature. The rationale is that autonomous and precise
patient quantification can result in enhanced clinical workflow and early intervention. The overall objective will
be achieved by pursuing three specific aims. (1) Developing and validating an interpretable deep learning
algorithm for precise and dynamic prediction of the patient’s clinical status to determine if it is more accurate in
predicting daily care transition outcomes, while providing interpretable information to the physician. (2)
Developing a pervasive sensing system for autonomous visual assessment of critically ill patients to determine
if it can provide accurate visual assessment of a patient compared to human expert, and if it can enrich acuity
prediction when combined with clinical data. (3) Implementing and evaluating an intelligent platform for real-
time integration of autonomous visual assessment and acuity prediction in clinical workflow to determine
accuracy in real-time prospective evaluation and to determine physicians’ risk perception and satisfaction. The
approach is innovative, because it represents the first attempt to (1) dynamically predict precise patient
trajectory, (2) autonomously perform visual assessment in the ICU, and (3) implement artificial intelligence
platform in real time in clinical workflow. The proposed research is significant since it will address several key
problems and critical barriers in critical care, including (1) lack of precise and real-time prediction of clinical
trajectory, (2) manual repetitive ICU assessments, and (3) uncaptured patient aspects. Ultimately, the results
are expected to improve patient outcomes and decrease hospitalization costs, as well as lifelong
complications.
项目概要
尽管密切监测和动态评估患者病情严重程度是 ICU 护理的关键方面,但两者都
目前,由于医疗保健提供者的时间限制,动态和精确的评估。
ICU 患者的病情严重程度几乎取决于医生的临床判断和警惕性。
捕捉重要的视觉评估细节,例如面部表情、姿势和活动能力
然而,这些视觉评估细节是由负担过重的护士偶尔捕捉到的,或者根本没有捕捉到。
与身体功能、疼痛和随后的临床恶化等关键指标相关。
长期目标是以自主且可靠的方式感知、量化和传达患者的临床状况
该应用程序的总体目标是开发用于传感、量化、
以自主、精确和可解释的方式传达任何患者的病情。
假设深度学习模型通过预测患者的敏锐度将优于现有的敏锐度临床评分
采用动态、精确和可解释的方式,使用对疼痛、情绪困扰和
该假设是根据身体机能以及临床和生理数据制定的。
初步数据并有充分的临床护理文献基础,其基本原理是自主且精确。
患者量化可以增强临床工作流程和早期干预。
(1) 开发和验证可解释的深度学习
精确动态预测患者临床状态的算法,以确定其是否更准确
预测日常护理过渡结果,同时向医生提供可解释的信息 (2)。
开发一种普遍传感系统,用于对重症患者进行自主视觉评估,以确定
与人类专家相比,它是否可以提供对患者的准确视觉评估,以及是否可以提高敏锐度
(3) 实施和评估实时智能平台。
临床工作流程中自主视觉评估和准确性预测的时间整合,以确定
实时前瞻性评估的准确性并确定医生的风险感知和满意度。
方法是创新的,因为它代表了(1)动态预测精确患者的首次尝试
轨迹,(2) 在 ICU 中自主执行视觉评估,(3) 实施人工智能
所提出的研究具有重要意义,因为它将解决几个关键问题。
重症监护中存在的问题和关键障碍,包括(1)缺乏准确、实时的临床预测
(2) 手动重复 ICU 评估,以及 (3) 未捕获的患者方面最终的结果。
预计将改善患者的治疗效果并降低住院费用以及终身受益
并发症。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Azra Bihorac其他文献
Azra Bihorac的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Azra Bihorac', 18)}}的其他基金
Bridge2AI: Patient-Focused Collaborative Hospital Repository Uniting Standards (CHoRUS) for Equitable AI
Bridge2AI:以患者为中心的协作医院存储库统一标准 (CHORUS),实现公平的人工智能
- 批准号:
10858694 - 财政年份:2022
- 资助金额:
$ 60.06万 - 项目类别:
Bridge2AI: Patient-Focused Collaborative Hospital Repository Uniting Standards (CHoRUS) for Equitable AI
Bridge2AI:以患者为中心的协作医院存储库统一标准 (CHORUS),实现公平的人工智能
- 批准号:
10472824 - 财政年份:2022
- 资助金额:
$ 60.06万 - 项目类别:
(MEnD-AKI) Multicenter Implementation of an Electronic Decision Support System for Drug-associated AKI
(MEnD-AKI) 药物相关 AKI 电子决策支持系统的多中心实施
- 批准号:
10414976 - 财政年份:2021
- 资助金额:
$ 60.06万 - 项目类别:
(MEnD-AKI) Multicenter Implementation of an Electronic Decision Support System for Drug-associated AKI
(MEnD-AKI) 药物相关 AKI 电子决策支持系统的多中心实施
- 批准号:
10594086 - 财政年份:2021
- 资助金额:
$ 60.06万 - 项目类别:
ADAPT: Autonomous Delirium Monitoring and Adaptive Prevention
ADAPT:自主谵妄监测和适应性预防
- 批准号:
10396041 - 财政年份:2021
- 资助金额:
$ 60.06万 - 项目类别:
(MEnD-AKI) Multicenter Implementation of an Electronic Decision Support System for Drug-associated AKI
(MEnD-AKI) 药物相关 AKI 电子决策支持系统的多中心实施
- 批准号:
10609525 - 财政年份:2021
- 资助金额:
$ 60.06万 - 项目类别:
ADAPT: Autonomous Delirium Monitoring and Adaptive Prevention
ADAPT:自主谵妄监测和适应性预防
- 批准号:
10178157 - 财政年份:2021
- 资助金额:
$ 60.06万 - 项目类别:
Intelligent Intensive Care Unit (I2CU): Pervasive Sensing and Artificial Intelligence for Augmented Clinical Decision-making
智能重症监护病房 (I2CU):普遍传感和人工智能增强临床决策
- 批准号:
10154047 - 财政年份:2021
- 资助金额:
$ 60.06万 - 项目类别:
(MEnD-AKI) Multicenter Implementation of an Electronic Decision Support System for Drug-associated AKI
(MEnD-AKI) 药物相关 AKI 电子决策支持系统的多中心实施
- 批准号:
10209005 - 财政年份:2021
- 资助金额:
$ 60.06万 - 项目类别:
Intelligent Intensive Care Unit (I2CU): Pervasive Sensing and Artificial Intelligence for Augmented Clinical Decision-making
智能重症监护病房 (I2CU):普遍传感和人工智能增强临床决策
- 批准号:
10374834 - 财政年份:2021
- 资助金额:
$ 60.06万 - 项目类别:
相似国自然基金
共享住宿平台中人工智能技术应用的影响机制研究
- 批准号:72372130
- 批准年份:2023
- 资助金额:41 万元
- 项目类别:面上项目
人工智能技术辅助胶质母细胞瘤精准诊断与预后研究及云平台建设
- 批准号:82303580
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
面向人工智能芯片的跨平台多模型融合编译技术研究
- 批准号:
- 批准年份:2022
- 资助金额:285 万元
- 项目类别:重点项目
共享平台用户可持续消费行为与平台绩效研究——基于人工智能、机器学习与计量经济学的方法
- 批准号:72272075
- 批准年份:2022
- 资助金额:45 万元
- 项目类别:面上项目
钙离子介导两步增强拉曼基底结合人工智能的呼吸道病原体即刻筛查平台在SARS-CoV-2检测中的研究初探
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Discovery-Driven Mathematics and Artificial Intelligence for Biosciences and Drug Discovery
用于生物科学和药物发现的发现驱动数学和人工智能
- 批准号:
10551576 - 财政年份:2023
- 资助金额:
$ 60.06万 - 项目类别:
A breakthrough mobile phone technology that aids in early detection of COPD
突破性手机技术有助于早期发现慢性阻塞性肺病
- 批准号:
10760409 - 财政年份:2023
- 资助金额:
$ 60.06万 - 项目类别:
Customizable Artificial Intelligence for the Biomedical Masses: Development of a User-Friendly Automated Machine Learning Platform for Biology Image Analysis.
面向生物医学大众的可定制人工智能:开发用于生物图像分析的用户友好的自动化机器学习平台。
- 批准号:
10699828 - 财政年份:2023
- 资助金额:
$ 60.06万 - 项目类别:
3D force sensing insoles for wearable, AI empowered, high-fidelity gait monitoring
3D 力传感鞋垫,用于可穿戴、人工智能支持的高保真步态监控
- 批准号:
10688715 - 财政年份:2023
- 资助金额:
$ 60.06万 - 项目类别:
SCH: Artificial Intelligence enabled multi-modal sensor platform for at-home health monitoring of patients
SCH:人工智能支持的多模式传感器平台,用于患者的家庭健康监测
- 批准号:
10816667 - 财政年份:2023
- 资助金额:
$ 60.06万 - 项目类别: