Bridge2AI: Patient-Focused Collaborative Hospital Repository Uniting Standards (CHoRUS) for Equitable AI
Bridge2AI:以患者为中心的协作医院存储库统一标准 (CHORUS),实现公平的人工智能
基本信息
- 批准号:10858694
- 负责人:
- 金额:$ 637.03万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-01 至 2026-08-31
- 项目状态:未结题
- 来源:
- 关键词:AccountabilityAcuteAddressAdoptionArtificial IntelligenceBiomedical ResearchBridge to Artificial IntelligenceCaringClinicalCollaborationsCommunitiesCritical CareCritical IllnessDataData ElementData SetData Storage and RetrievalDeteriorationDiagnosisDisciplineEducationElectroencephalographyElectronic Health RecordEngineeringEnsureEquityEthicsEventFocus GroupsFundingGenerationsGoalsHealth ServicesHospitalsImageIndustryInfrastructureJournalsLabelLawsLegalMachine LearningMeasuresMethodsModelingPatient-Focused OutcomesPatientsPrivacyPublicationsResearchResolutionSamplingScienceScientistStandardizationTelemetryTestingUnited States National Institutes of HealthValidationVisualizationWorkforce Developmentacute carecare deliverydata acquisitiondata modelingdata standardsdata toolselectronic structureimprovedliteracymultimodalityprogramsrepositoryskill acquisitionsocial health determinantstooltool developmenttreatment responsetrustworthiness
项目摘要
There is an urgent need for infrastructure to support artificial intelligence and machine learning (AI/ML) in critical care. Developing high-resolution multi-center data sets is a critical first step towards actionable and trustworthy AI. As part of the NIH Common Fund’s Bridge2AI program, the Patient-Focused Collaborative Hospital Repository Uniting Standards (CHoRUS) for Equitable AI data generation project will meet the need of generating data for ML/AI applications aimed at characterizing acute and critical care illness, predicting complications, and measuring treatment response among patients with acute or critical illness. Through 6 modules, the Patient-Focused CHoRUS for Equitable AI data generation project will addresses multiple challenges relevant for acquiring an AI-ready data set from more than 100,000 critically ill patients: 1) Team Science, 2) Ethical and Trustworthy AI, 3) Standards, 4) Tool Development and Optimization, 5) Data Acquisition, and 6) Skill and Workforce Development. The project’s overarching goal is to develop a publicly available, AI-ready critical care dataset of unprecedented diversity, while ensuring the methods promote privacy, accountability, clinical benefit, and equity, while promoting a new generation of AI clinicians and scientists. The dataset will also include a holdout test set, accessible for model external validation to aid marketplace adoption of AI-developed models for implementation in acute and critical care.
Drawing expertise from a diverse range of disciplines including team science, law, ethics, health services, biomedical science, engineering, and scientific journal publications, this project will A) establish a legal framework for collecting data at scale, sampling to ensure diversity and minimize bias; B) perform community-facing ethics focus groups to determine what data is appropriate for public sharing; C) ensure that data elements include appropriate social determinants of health to study and understand potential bias in care delivery; D) develop capabilities across a multi-center to acquire, standardize, tokenize, store, visualize, and label data including structured electronic health record data, tokenized unstructured electronic health record data, telemetry and EEG waveforms, imaging, and social determinants of health; E) acquire data, standardize data to the OMOP Common Data Model, transform data using differential privacy approaches that limit re-identification, and label data for diagnoses and events of clinical deterioration; and F) cultivate expertise in the lay and scientific community to improve AI literacy and utilization through multimodal educational approaches. To accomplish this, the project will involve extensive collaboration between centers as well as through the NIH Bridge2AI program, the NIH Bridge2AI Bridge Center, external biomedical and clinical organizations, industry, and regulatory agencies.
作为 NIH 共同基金的一部分,开发高分辨率多中心数据集是实现可操作且值得信赖的人工智能的关键第一步。 Bridge2AI 项目是公平人工智能数据生成项目的以患者为中心的协作医院存储库联合标准 (CHORUS),将满足 ML/AI 应用程序生成数据的需求,旨在描述急性和危重症护理疾病的特征,通过 6 个模块,预测并发症并测量急性或危重疾病患者的治疗反应,以患者为中心的 CHoRUS for Equitable AI 数据生成项目将解决与从超过 100,000 名重症患者获取 AI 就绪数据集相关的多项挑战。 :1) 团队科学,2) 道德和值得信赖的人工智能,3) 标准,4) 工具开发和优化,5) 数据采集,以及 6) 技能和劳动力该项目的总体目标是开发一个公开可用的、具有前所未有的多样性的人工智能重症监护数据集,确保这些方法促进隐私、问责制、临床利益和公平,同时促进新一代人工智能用户和科学家的发展。还将包括一个保留测试集,可用于模型外部验证,以帮助市场采用人工智能开发的模型来实施急症和重症护理。
该项目汲取了团队科学、法律、伦理、卫生服务、生物医学科学、工程和科学期刊出版物等不同学科的专业知识,将 A) 建立一个大规模收集数据、抽样的法律框架,以确保多样性并最大限度地减少偏见; B) 开展面向社区的道德焦点小组,以确定哪些数据适合公开共享 C) 确保数据元素包含适当的健康社会决定因素,以研究和了解医疗服务中的潜在偏见; - 获取、标准化、标记化、存储的中心,可视化和标记数据,包括结构化电子健康记录数据、标记化非结构化电子健康记录数据、遥测和脑电图波形、成像和健康的社会决定因素;E) 获取数据,将数据标准化为 OMOP 通用数据模型,使用差分转换数据限制重新识别的隐私方法,并为诊断和临床恶化事件标记数据;F) 培养非专业人士和科学界的专业知识,通过多模式教育方法提高人工智能素养和利用。为了实现这一目标,该项目将涉及广泛的内容。合作中心之间以及通过 NIH Bridge2AI 计划、NIH Bridge2AI 桥接中心、外部生物医学和临床组织、行业和监管机构。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Azra Bihorac其他文献
Azra Bihorac的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Azra Bihorac', 18)}}的其他基金
Bridge2AI: Patient-Focused Collaborative Hospital Repository Uniting Standards (CHoRUS) for Equitable AI
Bridge2AI:以患者为中心的协作医院存储库统一标准 (CHORUS),实现公平的人工智能
- 批准号:
10472824 - 财政年份:2022
- 资助金额:
$ 637.03万 - 项目类别:
(MEnD-AKI) Multicenter Implementation of an Electronic Decision Support System for Drug-associated AKI
(MEnD-AKI) 药物相关 AKI 电子决策支持系统的多中心实施
- 批准号:
10414976 - 财政年份:2021
- 资助金额:
$ 637.03万 - 项目类别:
(MEnD-AKI) Multicenter Implementation of an Electronic Decision Support System for Drug-associated AKI
(MEnD-AKI) 药物相关 AKI 电子决策支持系统的多中心实施
- 批准号:
10594086 - 财政年份:2021
- 资助金额:
$ 637.03万 - 项目类别:
ADAPT: Autonomous Delirium Monitoring and Adaptive Prevention
ADAPT:自主谵妄监测和适应性预防
- 批准号:
10396041 - 财政年份:2021
- 资助金额:
$ 637.03万 - 项目类别:
(MEnD-AKI) Multicenter Implementation of an Electronic Decision Support System for Drug-associated AKI
(MEnD-AKI) 药物相关 AKI 电子决策支持系统的多中心实施
- 批准号:
10609525 - 财政年份:2021
- 资助金额:
$ 637.03万 - 项目类别:
ADAPT: Autonomous Delirium Monitoring and Adaptive Prevention
ADAPT:自主谵妄监测和适应性预防
- 批准号:
10178157 - 财政年份:2021
- 资助金额:
$ 637.03万 - 项目类别:
(MEnD-AKI) Multicenter Implementation of an Electronic Decision Support System for Drug-associated AKI
(MEnD-AKI) 药物相关 AKI 电子决策支持系统的多中心实施
- 批准号:
10209005 - 财政年份:2021
- 资助金额:
$ 637.03万 - 项目类别:
Intelligent Intensive Care Unit (I2CU): Pervasive Sensing and Artificial Intelligence for Augmented Clinical Decision-making
智能重症监护病房 (I2CU):普遍传感和人工智能增强临床决策
- 批准号:
10154047 - 财政年份:2021
- 资助金额:
$ 637.03万 - 项目类别:
Intelligent Intensive Care Unit (I2CU): Pervasive Sensing and Artificial Intelligence for Augmented Clinical Decision-making
智能重症监护病房 (I2CU):普遍传感和人工智能增强临床决策
- 批准号:
10580785 - 财政年份:2021
- 资助金额:
$ 637.03万 - 项目类别:
Intelligent Intensive Care Unit (I2CU): Pervasive Sensing and Artificial Intelligence for Augmented Clinical Decision-making
智能重症监护病房 (I2CU):普遍传感和人工智能增强临床决策
- 批准号:
10374834 - 财政年份:2021
- 资助金额:
$ 637.03万 - 项目类别:
相似国自然基金
Tenascin-X对急性肾损伤血管内皮细胞的保护作用及机制研究
- 批准号:82300764
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
活性脂质Arlm-1介导的自噬流阻滞在儿童T细胞急性淋巴细胞白血病化疗耐药逆转中的作用机制研究
- 批准号:82300182
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
PHF6突变通过相分离调控YTHDC2-m6A-SREBP2信号轴促进急性T淋巴细胞白血病发生发展的机制研究
- 批准号:82370165
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
SGO2/MAD2互作调控肝祖细胞的细胞周期再进入影响急性肝衰竭肝再生的机制研究
- 批准号:82300697
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
KIF5B调控隧道纳米管介导的线粒体转运对FLT3-ITD阳性急性髓系白血病的作用机制
- 批准号:82370175
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
相似海外基金
Extraction of Vital Signs using a Telehealth Application for Asthma - EViTA-AThe purpose of this grant is to evaluate mobile devices to extract vitals signs to monitor patients with Asthma
使用哮喘远程医疗应用程序提取生命体征 - EViTA-A 这项拨款的目的是评估移动设备提取生命体征以监测哮喘患者
- 批准号:
10699530 - 财政年份:2023
- 资助金额:
$ 637.03万 - 项目类别:
VoiceLove: An App-Based COMmunication Tool Designed to Address DeliriUm and Improve Family ENgagement and PatIent/Family SatisfaCtion in CriticAlly Ill PaTiEnts (COMMUNICATE)
VoiceLove:一种基于应用程序的通信工具,旨在解决危重患者的谵妄问题并提高家庭参与度和患者/家属满意度(沟通)
- 批准号:
10602709 - 财政年份:2023
- 资助金额:
$ 637.03万 - 项目类别:
Privacy-Aware Federated Learning for Breast Cancer Risk Assessment
用于乳腺癌风险评估的隐私意识联合学习
- 批准号:
10742425 - 财政年份:2023
- 资助金额:
$ 637.03万 - 项目类别:
VIPCare: Virtual Predictive Care workflow with integrated surveillance for optimal care protocol selection and management in at-risk prostate cancer patients
VIPCare:虚拟预测护理工作流程,具有综合监测功能,可为高危前列腺癌患者提供最佳护理方案选择和管理
- 批准号:
10758350 - 财政年份:2023
- 资助金额:
$ 637.03万 - 项目类别: