High-throughput closed-loop direct aberration sensing and correction for multiphoton imaging in live animals
用于活体动物多光子成像的高通量闭环直接像差传感和校正
基本信息
- 批准号:10572572
- 负责人:
- 金额:$ 10.41万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-03-01 至 2025-02-28
- 项目状态:未结题
- 来源:
- 关键词:3-DimensionalAcuteAdultAnimalsAttenuatedBehaviorBiological ProcessBiomedical ResearchBrainCancer BiologyCell CommunicationComplexDendritic CellsDeteriorationElasticityFluorescenceFoundationsGoalsHeatingImageImaging DeviceImmune responseImmunologyInterference MicroscopyLasersLightLightingMeasurementMeasuresMethodsMicroscopeMicroscopyMusMuscleNeuronsNeurosciencesNoiseOperative Surgical ProceduresOptical MethodsOrganismPenetrationPhasePhotobleachingPhotonsPredispositionProceduresProcessResearchResectedResolutionScanningScientistSignal TransductionSliceSourceSpecificitySpecimenSpeedSystemT-LymphocyteTechniquesTechnologyThalamic structureTimeTissue SampleTissue imagingTissuesTubeZebrafishadaptive opticscareercell motilitycellular imagingconfocal imagingfluorophoreimprovedin vivolymph nodesmulti-photonmultiphoton imagingmultiphoton microscopynanoscalenew technologynon-invasive systemnovelphotomultiplierprogramsreconstructionsubmicronthree photon microscopytissue phantomtooltwo-photon
项目摘要
Project Summary
This project aims to deliver real-time aberration-corrected multiphoton imaging with improved signal-to-
noise-ratio (SNR) and spatial resolution for studying turbid deep-tissue (~2 mm) of living animals at the cellular
level. Multiphoton microscopy (MPM) has been a useful tool to study biological processes due to its high
specificity and sub-wavelength resolution. Particularly, compared to one-photon imaging, MPM uses excitation
light with a longer wavelength that penetrates deeper into tissues, while the nonlinear process requires a
multiphoton interaction that renders three-dimensional localized excitation. However, the higher-order nonlinear
excitation is more susceptible to focus aberrations, thus, posing a limit for penetration depth in highly scattering
tissues. Adaptive optics (AO) has been a promising tool for aberration sensing and correction for MPM in living
systems. However, two major issues in existing AO methods, 1) accuracy, and 2) speed in aberration sensing,
remain challenging to in vivo real-time deep-tissue imaging.
I propose to develop a new high-throughput direct aberration sensing and correction method for MPM,
termed confocal gradient light interference microscopy (CGLIM). This technique aims to measure the aberrated
wavefront using a common-path, phase-shifting interferometer, to undo the systematic and specimen-induced
aberration which, in turn, will improve the quality of the excitation focus and enhance the signal strength.
Specifically, compared to other efforts, CGLIM uses the long-wavelength (~1.7 μm) elastic backscattered light
from tissues to directly measure the aberrated wavefront of the excitation beam, resulting in substantially lower
power compared to fluorescence techniques and eliminating photodamage, photobleaching, or heating damage
of living systems. Importantly, CGLIM measures the aberrated wavefront only near the focal plane with
nanoscale sensitivity (~2 nm or ~0.002 rad) owing to its common-path, confocal configuration. Furthermore,
CGLIM can validate the accuracy of the aberration sensing by itself via phase conjugation. Lastly, the aberration
correction procedure is directly fed by CGLIM’s measurement in a closed loop without any iterations. CGLIM is
also readily implemented in any laser-scanning system with objectives of different numeric apertures.
With the proposed new method, I will first demonstrate aberration sensing and correction using CGLIM
with tissue phantoms and ex vivo tissue slices. Then, I will combine CGLIM with three-photon (3P) microscopy
to demonstrate aberration-corrected 3P imaging of neuronal activities in live mice and intact adult zebrafish
brains. Finally, I aim to combine the aberration-corrected MPM with the adaptive excitation source and polygon
scanning developed in-house to study real-time neuronal activities in deep regions of live brains, and T cell –
dendritic cell interactions in deep regions of a mouse’s lymph node.
With this project, I hope to establish my research focus on aberration-corrected interferometric
multiphoton imaging for deep tissues in living animals and enable more studies in neuroscience and immunology.
项目摘要
该项目旨在提供实时畸变校正的多光子成像,并改善信号对 -
噪声比率(SNR)和空间分辨率用于研究细胞处的活动物浊度(〜2 mm)
等级。多光子显微镜(MPM)是研究生物学过程的有用工具
特异性和次波长分辨率。特别是,与单光子成像相比,MPM使用兴奋
光线具有更长的波长,可深入组织,而非线性过程需要
多光子相互作用,它具有三维局部兴奋。但是,高阶非线性
兴奋更容易焦点畸变,因此,在高度散射中构成了渗透深度的极限
自适应光学元件(AO)一直是MPM在生活中的畸变感应和校正的有前途的工具
系统。但是,现有AO方法中的两个主要问题,1)准确性和2)速度的差速感应,
对体内实时深度组织成像保持挑战。
我建议为MPM开发一种新的高通量直接畸变感应和校正方法,
称为共聚焦梯度光干扰显微镜(CGLIM)。该技术旨在测量畸形
波前使用通用路径,相位转移干涉仪撤消系统和标本诱导的
畸变反过来将提高兴奋聚焦的质量并增强信号强度。
具体而言,与其他努力相比,CGLIM使用长波长(〜1.7μm)弹性反向散射光
从组织到直接测量兴奋束的异常波前,导致较低
与荧光技术相比,电力并消除了光损伤,光漂白或加热损害
生活系统。重要的是,CGLIM仅在焦平面附近测量了一个畸变的波前
纳米级敏感性(〜2 nm或〜0.002 rad),由于其共同路径的共聚焦配置。此外,
CGLIM可以通过相结合本身验证像差传感的准确性。最后,畸变
CGLIM在封闭环中的测量直接喂养校正程序,而无需任何迭代。 CGLIM是
也很容易在任何激光扫描系统中实现,具有不同的数字孔径的目标。
使用拟议的新方法,我首先使用CGLIM证明异常敏感性和校正
带有组织幻像和离体组织切片。然后,我将CGLIM与三光子(3p)显微镜相结合
展示活小鼠中神经元活性的像差校正的3P成像和完整的成年斑马鱼
大脑。最后,我的目标是将被像差校正的MPM与自适应兴奋源和多边形结合
扫描开发了内部,以研究活体大脑和T细胞深处的实时神经元活动 -
小鼠淋巴结深区域中的树突状细胞相互作用。
在这个项目中,我希望将我的研究重点放在被像差校正的干涉量学上
对活动物中深层组织的多光子成像,并在神经科学和免疫学方面进行了更多研究。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Xi Chen其他文献
Xi Chen的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Xi Chen', 18)}}的其他基金
Crosstalk between the ER Stress Response and Mitochondrial Fatty Acid Oxidation in MYC-driven Breast Cancer
MYC 驱动的乳腺癌中 ER 应激反应与线粒体脂肪酸氧化之间的串扰
- 批准号:
10581179 - 财政年份:2023
- 资助金额:
$ 10.41万 - 项目类别:
Proteostasis Reprogramming in Mutant KRAS-Driven Cancers
突变 KRAS 驱动的癌症中的蛋白质稳态重编程
- 批准号:
10587281 - 财政年份:2022
- 资助金额:
$ 10.41万 - 项目类别:
A Life Course Approach to Understanding Racial and Ethnic Disparities in Alzheimer's Disease and Related Dementias and Health Care
了解阿尔茨海默病及相关痴呆症和医疗保健中种族和民族差异的生命全程方法
- 批准号:
10650381 - 财政年份:2022
- 资助金额:
$ 10.41万 - 项目类别:
A Life Course Approach to Understanding Racial and Ethnic Disparities in Alzheimer's Disease and Related Dementias and Health Care
了解阿尔茨海默病及相关痴呆症和医疗保健中的种族和民族差异的生命全程方法
- 批准号:
10448032 - 财政年份:2022
- 资助金额:
$ 10.41万 - 项目类别:
Chemoenzymatic construction of synthetic human milk oligosaccharide (HMO) glycome
合成人乳低聚糖 (HMO) 糖组的化学酶法构建
- 批准号:
10567752 - 财政年份:2022
- 资助金额:
$ 10.41万 - 项目类别:
Chemoenzymatic construction of synthetic human milk oligosaccharide (HMO) glycome
合成人乳低聚糖 (HMO) 糖组的化学酶法构建
- 批准号:
10710393 - 财政年份:2022
- 资助金额:
$ 10.41万 - 项目类别:
Elucidating perifoveal vascular development in infants
阐明婴儿中心凹周围血管发育
- 批准号:
10696178 - 财政年份:2022
- 资助金额:
$ 10.41万 - 项目类别:
Improving oral health awareness and dental referrals for adult patients receiving palliative care
提高接受姑息治疗的成年患者的口腔健康意识和牙科转诊
- 批准号:
10348739 - 财政年份:2021
- 资助金额:
$ 10.41万 - 项目类别:
Chemoenzymatic synthesis of bacterial nonulosonic acids and glycans
细菌非酮糖酸和聚糖的化学酶法合成
- 批准号:
10364735 - 财政年份:2021
- 资助金额:
$ 10.41万 - 项目类别:
Chemoenzymatic synthesis of bacterial nonulosonic acids and glycans
细菌非酮糖酸和聚糖的化学酶法合成
- 批准号:
10553186 - 财政年份:2021
- 资助金额:
$ 10.41万 - 项目类别:
相似国自然基金
去泛素化酶USP5调控P53通路在伴E2A-PBX1成人ALL的致病机制研究
- 批准号:81900151
- 批准年份:2019
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
核基质结合区蛋白SATB1调控CCR7抑制急性T淋巴细胞白血病中枢浸润的作用与机制
- 批准号:81870113
- 批准年份:2018
- 资助金额:55.0 万元
- 项目类别:面上项目
成人及儿童急性淋巴细胞白血病的基因组转录组生物信息学分析方法建立及数据分析
- 批准号:81570122
- 批准年份:2015
- 资助金额:60.0 万元
- 项目类别:面上项目
NR3C1基因突变在成人急性淋巴细胞白血病耐药与复发中的作用与机制研究
- 批准号:81470309
- 批准年份:2014
- 资助金额:75.0 万元
- 项目类别:面上项目
儿童和成人急性T淋巴细胞白血病中miRNA和转录因子共调控网络的差异性研究
- 批准号:31270885
- 批准年份:2012
- 资助金额:80.0 万元
- 项目类别:面上项目
相似海外基金
Targeting Menin in Acute Leukemia with Upregulated HOX Genes
通过上调 HOX 基因靶向急性白血病中的 Menin
- 批准号:
10655162 - 财政年份:2023
- 资助金额:
$ 10.41万 - 项目类别:
Microglial process convergence following brain injury
脑损伤后小胶质细胞过程收敛
- 批准号:
10657968 - 财政年份:2023
- 资助金额:
$ 10.41万 - 项目类别:
Mechanical signaling through the nuclear membrane in lung alveolar health
通过核膜的机械信号传导影响肺泡健康
- 批准号:
10677169 - 财政年份:2023
- 资助金额:
$ 10.41万 - 项目类别:
p16INK4a+ fibroblasts regulate epithelial regeneration after injury in lung alveoli through the SASP
p16INK4a成纤维细胞通过SASP调节肺泡损伤后的上皮再生
- 批准号:
10643269 - 财政年份:2023
- 资助金额:
$ 10.41万 - 项目类别: