Elucidating the Role of Microenvironment Mechanics in Regulating Cardiac Myofibroblast Plasticity
阐明微环境力学在调节心脏肌成纤维细胞可塑性中的作用
基本信息
- 批准号:10570135
- 负责人:
- 金额:$ 13.04万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-07-01 至 2025-06-30
- 项目状态:未结题
- 来源:
- 关键词:Advisory CommitteesAffectAnimal ModelAttenuatedBackBiocompatible MaterialsBiologyBiomedical EngineeringCardiacCardiologyCardiovascular DiseasesCardiovascular systemCellsCellular AssayCharacteristicsChildChromatinCommittee MembersComplementCustomDevelopmentEffector CellEngineeringEnvironmentEpigenetic ProcessEtiologyEventExtracellular MatrixFeedbackFibroblastsFibrosisGenesGeneticGenomicsGoalsHeartHeart failureHumanHydrogelsHypertrophyImmunoprecipitationMass Spectrum AnalysisMechanicsMediatingMediatorMedicineMentorsMentorshipModelingMolecularMorbidity - disease rateMusMyocardialMyocardial IschemiaMyofibroblastPathologicPathway interactionsPatient-Focused OutcomesPlayPopulationProteinsProteomicsProtocols documentationRegenerative MedicineRegulationRegulatory ElementReporterResearchResearch TrainingRoleSeriesSignal TransductionSystemTestingTherapeuticTimeTissuesTrainingTransforming Growth Factor betaTransposaseUniversitiesantifibrotic treatmentcardiac tissue engineeringcareercell typecoronary fibrosisdrug candidatedruggable targeteffective therapyefficacy testingepigenomicsfibrogenesisin vitro Assayin vivoinduced pluripotent stem cellinherited cardiomyopathyinsightlive cell imagingmechanical propertiesmechanical signalmortalitymouse modelmultiple omicsnovelnovel therapeutic interventionpressureprogramsresponsesingle cell analysissynergismtraining opportunitytranscription factortransdifferentiationvirtual
项目摘要
PROJECT SUMMARY
Fibrosis underlies a vast number of cardiac pathological conditions, ranging from genetic cardiomyopathies to
ischemic heart failure. Although substantial progress has been made in identifying molecular signals that trigger
the characteristic activation of quiescent cardiac fibroblasts (CFs) and their transdifferentiation into
myofibroblasts (MyoFBs), far less is known about the mechanisms that govern their long-term fate and
persistence, which presents major obstacles to the development of effective anti-fibrotic therapies.
This K99/R00 application describes a five-year research training plan that proposes to leverage (i) human
induced pluripotent stem cell-derived cardiac fibroblasts (iPSC-CFs), (ii) engineered biomaterials with tunable
mechanical properties, and (ii) single-cell multiomics platforms to investigate molecular mechanisms that govern
MyoFB fate and plasticity. Given the well-established sensitivity of CFs and MyoFBs to extracellular matrix (ECM)
stiffness, the applicant Dr. Sangkyun Cho will test the hypothesis that modulation of ECM-mediated mechanical
signaling potentiates the de-differentiation of MyoFBs, by synergizing with soluble factors known to regulate
major pathways in fibrogenesis. In Aim 1 (K99), Dr. Cho will use reporter iPSC lines (with fluorescently tagged
canonical MyoFB ‘marker’ genes, e.g., CFP-TAGLN) and a novel dynamically softening hydrogel system to
characterize in real-time the effects of mechanical unloading on MyoFB fate. In Aim 2 (K99), Dr. Cho will
investigate the synergy between ECM softening and the TGF-beta pathway in regulating MyoFB states, (i) by
examining stiffness-dependent protein interactions among mechanosensitive transcription factors (e.g., yes-
associated protein 1 (YAP)), and (ii) by identifying epigenetic regulators downstream of ECM stiffness with single-
cell assay for transposase transposase-accessible chromatin (scATAC-seq). In Aim 3 (R00), Dr. Cho will identify
potential druggable targets along the cell’s mechanosensory apparatus, and test candidate compounds in
engineered heart tissues and a mouse model of pressure-overload induced hypertrophy and heart failure.
The proposed studies build upon PI Dr. Sangkyun Cho’s well-suited prior training in biomaterials, proteomics,
and ECM mechanobiology, while providing new training opportunities in (i) reporter iPSC-CFs, (ii) single-cell
multiomics platforms, and (iii) animal models. Mentor Dr. Joseph Wu is a pioneer in iPSCs and cardiovascular
biology, and co-mentor Dr. Sarah Heilshorn is a leading expert in biomaterials and regenerative medicine,
whose mentorship complements that of Dr. Wu. Advisory Committee members Drs. Jeffery Molkentin (cardiac
fibrosis), Joseph Hill (heart failure models), and Michal Snyder (single-cell genomics) provide additional expertise
and guidance. In Summary, the well-tailored research training plan, exceptional mentoring team, and an
outstanding Environment at Stanford University are anticipated to help propel Dr. Cho toward his long-term goal
of establishing an independent research program at the intersection of bioengineering and cardiovascular
stromal biology.
项目概要
纤维化是大量心脏病理学病症的基础,从遗传性心肌病到
尽管在识别引发缺血性心力衰竭的分子信号方面已经取得了实质性进展。
静止心脏成纤维细胞(CF)的特征性激活及其转分化为
对于肌成纤维细胞(MyoFBs)的长期命运和控制机制知之甚少。
持久性,这对开发有效的抗纤维化疗法构成了主要障碍。
该 K99/R00 应用程序描述了一项为期五年的研究培训计划,建议利用 (i) 人力
诱导多能干细胞衍生的心脏成纤维细胞(iPSC-CF),(ii)具有可调性的工程生物材料
机械特性,以及(ii)单细胞多组学平台来研究控制的分子机制
鉴于 CF 和 MyoFB 对细胞外基质 (ECM) 的既定敏感性,MyoFB 的命运和可塑性。
刚度方面,申请人 Sangkyun Cho 博士将测试以下假设:ECM 介导的机械调节
信号传导通过与已知调节的可溶性因子协同作用,增强 MyoFB 的去分化
在目标 1 (K99) 中,Cho 博士将使用报告 iPSC 系(带有荧光标记)。
典型的 MyoFB“标记”基因,例如 CFP-TAGLN)和新型动态软化水凝胶系统
在 Aim 2 (K99) 中,Cho 博士将实时描述机械卸载对 MyoFB 命运的影响。
研究 ECM 软化和 TGF-β 通路在调节 MyoFB 状态中的协同作用,(i)
检查机械敏感转录因子之间的刚度依赖性蛋白质相互作用(例如,是的-
相关蛋白 1 (YAP)),以及 (ii) 通过使用单-鉴定 ECM 硬度下游的表观遗传调节因子
在 Aim 3 (R00) 中,Cho 博士将鉴定转座酶可及染色质的细胞分析 (scATAC-seq)。
沿着细胞的机械感觉装置潜在的可成药靶点,并测试候选化合物
工程心脏组织和压力超负荷引起肥厚和心力衰竭的小鼠模型。
拟议的研究建立在 PI 博士 Sangkyun Cho 之前在生物材料、蛋白质组学、
和 ECM 机械生物学,同时提供以下方面的新培训机会:(i) 报告 iPSC-CF,(ii) 单细胞
多组学平台,以及 (iii) 动物模型导师 Joseph Wu 博士是 iPSC 和心血管领域的先驱。
生物学和联合导师 Sarah Heilshorn 博士是生物材料和再生医学领域的专家,
其导师与吴博士顾问委员会成员 Jeffery Molkentin 博士(心脏病)相辅相成。
纤维化)、Joseph Hill(心力衰竭模型)和 Michal Snyder(单细胞基因组学)提供了额外的专业知识
总而言之,精心定制的研究培训计划、出色的指导团队和专业的指导。
斯坦福大学出色的环境有望帮助曹博士实现他的长期目标
在生物工程和心血管交叉领域建立独立的研究计划
基质生物学。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Sangkyun Cho其他文献
Sangkyun Cho的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Sangkyun Cho', 18)}}的其他基金
Human iPSCs for Elucidating Stress-mediated Paracrine Signaling in Dilated Cardiomyopathy
人类 iPSC 用于阐明扩张型心肌病中应激介导的旁分泌信号传导
- 批准号:
10461703 - 财政年份:2020
- 资助金额:
$ 13.04万 - 项目类别:
相似国自然基金
肾—骨应答调控骨骼VDR/RXR对糖尿病肾病动物模型FGF23分泌的影响及中药的干预作用
- 批准号:82074395
- 批准年份:2020
- 资助金额:55 万元
- 项目类别:面上项目
基于细胞自噬调控的苦参碱对多囊肾小鼠动物模型肾囊肿形成的影响和机制研究
- 批准号:
- 批准年份:2019
- 资助金额:33 万元
- 项目类别:地区科学基金项目
靶向诱导merlin/p53协同性亚细胞穿梭对听神经瘤在体生长的影响
- 批准号:81800898
- 批准年份:2018
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
伪狂犬病病毒激活三叉神经节细胞对其NF-кB和PI3K/Akt信号转导通路影响的分子机制研究
- 批准号:31860716
- 批准年份:2018
- 资助金额:39.0 万元
- 项目类别:地区科学基金项目
基于中枢胰岛素抵抗探讨自噬失调对肾虚阿尔茨海默的影响及机制研究
- 批准号:81803854
- 批准年份:2018
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Temporospatial Single-Cell Characterization of Angiogenesis and Myocardial Regeneration in Small and Large Mammals
小型和大型哺乳动物血管生成和心肌再生的时空单细胞表征
- 批准号:
10751870 - 财政年份:2023
- 资助金额:
$ 13.04万 - 项目类别:
Cell Therapy Program with Scale-up cGMP Manufacturing of Human Corneal Stromal Stem Cells
细胞治疗计划,扩大人类角膜基质干细胞的 cGMP 生产
- 批准号:
10720562 - 财政年份:2023
- 资助金额:
$ 13.04万 - 项目类别:
Precision Apheresis: stem cell isolation from patients with sickle cell disease for gene therapy using high-throughput microfluidics
精密血浆分离术:使用高通量微流控技术从镰状细胞病患者中分离干细胞进行基因治疗
- 批准号:
10723247 - 财政年份:2023
- 资助金额:
$ 13.04万 - 项目类别: