Identification of mechanisms that regulate postsynaptic receptor abundance at the neuromuscular junction
神经肌肉接头突触后受体丰度调节机制的鉴定
基本信息
- 批准号:10091026
- 负责人:
- 金额:$ 18.1万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-02-15 至 2026-01-31
- 项目状态:未结题
- 来源:
- 关键词:AffectAnimal ModelAnimalsAutoimmuneBiological SciencesBiomechanicsCaenorhabditis elegansCandidate Disease GeneCell membraneChemicalsChildCholinergic ReceptorsClathrinClinicalCommunitiesCongenital Myasthenic SyndromesContractsCore FacilityDataDefectDelawareDevelopmentDiseaseEndocytosisFoundationsFutureGene TargetingGenesGeneticGenetic ModelsGoalsHistopathologyHomeostasisHomologous GeneHypersensitivityImageIndividualLeadLevamisoleLocomotionMaintenanceMediatingMembraneMentorsMentorshipMolecularMotor NeuronsMovementMuscleMuscle ContractionMuscle WeaknessMuscle functionMuscle relaxation phaseMuscular DystrophiesMusculoskeletalMyasthenia GravisMyopathyNeuromuscular JunctionNeurosciencesNicotinic AgonistsNicotinic ReceptorsParalysedPathway interactionsPatientsPharmacologyPhysiologyPlayRNA interference screenResearchResource DevelopmentRoleScientistSideSignal TransductionSkeletal MuscleSynapsesSyndromeSystemTestingTherapeuticTimeUniversitiesWorkacetylcholine receptor agonistbasecareer developmentcholinergiccongenital myopathydensitydesignepsinexperimental studygenome-wideinnovationkinematicsknock-downlevamisole resistancemuscular structuremutantneuromuscularneuromuscular transmissionnoveloptogeneticspostsynapticpresynaptic neuronsprogramsreceptorrecruittargeted treatmenttrafficking
项目摘要
Project Summary
At the neuromuscular junction (NMJ), postsynaptic nicotinic acetylcholine receptors (AChRs) transduce a
chemical signal released from a cholinergic motor neuron into an electrical signal to induce muscle contraction.
Defects in cholinergic signaling are the primary cause of severe muscle weakness observed in individuals with
congenital myasthenic syndromes and the autoimmune syndrome myasthenia gravis. In addition, clinical
features of some congenital myopathies and muscular dystrophies suggest underlying cholinergic signaling
defects. Together, this highlights the importance of determining how signaling through AChRs is regulated at the
NMJ. While mechanisms that lead to the clustering of postsynaptic AChRs have been well studied, little is known
about how receptor insertion and endocytosis is controlled to maintain synaptic efficacy.
The body wall muscles in the model organism C. elegans are functionally comparable to vertebrate skeletal
muscles. Sinusoidal locomotion occurs as a result of activation of postsynaptic AChRs on one side of the animal,
which causes muscle contraction, while simultaneous stimulation of GABAA receptors on the opposite side of
the animal triggers muscle relaxation. To identify novel factors that regulate postsynaptic cholinergic signaling
we performed a genome wide RNAi screen for gene knockdowns that altered C. elegans sensitivity to the AChR
agonist levamisole. One knockdown that caused levamisole hypersensitivity was epn-1, the homolog of
mammalian Epsin, which functions to recruit specific cargoes and induce membrane curvature during
endocytosis. We discovered that loss of epn-1 resulted in an increase in AChRs, but surprisingly, a decrease in
GABAA receptors on the plasma membrane. This led us to hypothesize that EPN-1 as well as some of the other
screen isolates regulate trafficking of postsynaptic receptors to maintain appropriate neuromuscular
transmission. Our overarching goal is to define the mechanisms that control postsynaptic receptor abundance
and localization at the NMJ by characterizing genes identified in our screen. We will use an integrated approach,
performing innovative genetic, imaging, biomechanical profiling, and optogenetic experiments. Our study will
enable us to develop a broad understanding of mechanisms underlying postsynaptic receptor trafficking at the
NMJ, as well as identify novel gene targets for future studies and therapeutic design.
I will build upon my strong foundation in genetics, neuroscience, physiology, and C. elegans research to develop
a comprehensive and meaningful research program under the mentorship of Dr. Velia Fowler and Dr. Robert
Akins who have expertise in skeletal muscle contraction and NMJ development in children with muscle diseases,
respectively. This research plan will be carried out in the Department of Biological Sciences and excellent core
facilities at the University of Delaware. The Delaware Center for Musculoskeletal Research will provide access
to strong mentors, career development resources, and a collaborative interdisciplinary community of scientists.
项目概要
在神经肌肉接头 (NMJ),突触后烟碱乙酰胆碱受体 (AChR) 转导
从胆碱能运动神经元释放的化学信号转化为电信号以诱导肌肉收缩。
胆碱能信号传导缺陷是患有以下疾病的个体严重肌无力的主要原因
先天性肌无力综合征和自身免疫综合征重症肌无力。此外,临床
一些先天性肌病和肌营养不良症的特征表明存在潜在的胆碱能信号传导
缺陷。总之,这凸显了确定如何通过 AChR 调节信号传导的重要性。
NMJ。虽然导致突触后 AChR 聚集的机制已得到充分研究,但人们知之甚少
关于如何控制受体插入和内吞作用以维持突触功效。
模式生物秀丽隐杆线虫的体壁肌肉在功能上与脊椎动物骨骼肌相当
肌肉。正弦运动是由于动物一侧突触后 AChR 激活而发生的,
引起肌肉收缩,同时刺激另一侧的 GABAA 受体
动物会引发肌肉放松。识别调节突触后胆碱能信号传导的新因素
我们对基因敲低进行了全基因组 RNAi 筛选,这些基因敲低改变了线虫对 AChR 的敏感性
激动剂左旋咪唑。一种引起左旋咪唑过敏的基因敲低是 epn-1,它是
哺乳动物 Epsin,其功能是招募特定货物并在过程中诱导膜弯曲
内吞作用。我们发现 epn-1 的缺失会导致 AChR 的增加,但令人惊讶的是,AChR 的减少
质膜上的 GABAA 受体。这使我们假设 EPN-1 以及其他一些
筛选分离物调节突触后受体的运输以维持适当的神经肌肉
传播。我们的首要目标是定义控制突触后受体丰度的机制
并通过表征我们筛选中识别的基因在 NMJ 进行定位。我们将采用综合方法,
进行创新的遗传、成像、生物力学分析和光遗传学实验。我们的研究将
使我们能够对突触后受体贩运的机制有广泛的了解
NMJ,以及为未来的研究和治疗设计确定新的基因靶点。
我将利用我在遗传学、神经科学、生理学和线虫研究方面的坚实基础来开发
在 Velia Fowler 博士和 Robert 博士的指导下开展的一项全面且有意义的研究项目
Akins 在患有肌肉疾病的儿童骨骼肌收缩和 NMJ 发育方面拥有丰富的专业知识,
分别。本研究计划将在生物科学系及优秀核心开展
特拉华大学的设施。特拉华州肌肉骨骼研究中心将提供访问权限
强大的导师、职业发展资源和跨学科科学家协作社区。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jessica E Tanis其他文献
Calcium homeostasis modulator (CALHM) ion channels: structure, functions and physiological roles.
钙稳态调节剂 (CALHM) 离子通道:结构、功能和生理作用。
- DOI:
- 发表时间:
2014 - 期刊:
- 影响因子:0
- 作者:
J Kevin Foskett;Zhongming Ma;Adam P Siebert;Todd Lamitina;Philippe Marambaud;Jessica E Tanis;Akiyuki Taruno - 通讯作者:
Akiyuki Taruno
Jessica E Tanis的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jessica E Tanis', 18)}}的其他基金
Impact of PIP5K1 on extracellular vesicle biogenesis
PIP5K1 对细胞外囊泡生物发生的影响
- 批准号:
10666794 - 财政年份:2023
- 资助金额:
$ 18.1万 - 项目类别:
Identification of mechanisms that regulate postsynaptic receptor abundance at the neuromuscular junction
神经肌肉接头突触后受体丰度调节机制的鉴定
- 批准号:
10352307 - 财政年份:2021
- 资助金额:
$ 18.1万 - 项目类别:
Elucidating biogenesis and cargo sorting mechanisms for discrete extracellular vesicle subpopulations in C. elegans
阐明线虫离散细胞外囊泡亚群的生物发生和货物分选机制
- 批准号:
10668290 - 财政年份:2020
- 资助金额:
$ 18.1万 - 项目类别:
Elucidating biogenesis and cargo sorting mechanisms for discrete extracellular vesicle subpopulations in C. elegans
阐明线虫离散细胞外囊泡亚群的生物发生和货物分选机制
- 批准号:
10223381 - 财政年份:2020
- 资助金额:
$ 18.1万 - 项目类别:
Supplement to Elucidating biogenesis and cargo sorting mechanisms for discrete extracellular vesicle subpopulations in C. elegans
补充阐明线虫离散细胞外囊泡亚群的生物发生和货物分选机制
- 批准号:
10643364 - 财政年份:2020
- 资助金额:
$ 18.1万 - 项目类别:
Elucidating biogenesis and cargo sorting mechanisms for discrete extracellular vesicle subpopulations in C. elegans
阐明线虫离散细胞外囊泡亚群的生物发生和货物分选机制
- 批准号:
10725076 - 财政年份:2020
- 资助金额:
$ 18.1万 - 项目类别:
Elucidating biogenesis and cargo sorting mechanisms for discrete extracellular vesicle subpopulations in C. elegans
阐明线虫离散细胞外囊泡亚群的生物发生和货物分选机制
- 批准号:
10456097 - 财政年份:2020
- 资助金额:
$ 18.1万 - 项目类别:
Dysferlin regulation of acetylcholine signaling at the C. elegans NMJ
Dysferlin 对线虫 NMJ 乙酰胆碱信号传导的调节
- 批准号:
8085729 - 财政年份:2010
- 资助金额:
$ 18.1万 - 项目类别:
Dysferlin regulation of acetylcholine signaling at the C. elegans NMJ
Dysferlin 对线虫 NMJ 乙酰胆碱信号传导的调节
- 批准号:
8000546 - 财政年份:2010
- 资助金额:
$ 18.1万 - 项目类别:
相似国自然基金
肾—骨应答调控骨骼VDR/RXR对糖尿病肾病动物模型FGF23分泌的影响及中药的干预作用
- 批准号:82074395
- 批准年份:2020
- 资助金额:55 万元
- 项目类别:面上项目
基于细胞自噬调控的苦参碱对多囊肾小鼠动物模型肾囊肿形成的影响和机制研究
- 批准号:
- 批准年份:2019
- 资助金额:33 万元
- 项目类别:地区科学基金项目
靶向诱导merlin/p53协同性亚细胞穿梭对听神经瘤在体生长的影响
- 批准号:81800898
- 批准年份:2018
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
伪狂犬病病毒激活三叉神经节细胞对其NF-кB和PI3K/Akt信号转导通路影响的分子机制研究
- 批准号:31860716
- 批准年份:2018
- 资助金额:39.0 万元
- 项目类别:地区科学基金项目
基于中枢胰岛素抵抗探讨自噬失调对肾虚阿尔茨海默的影响及机制研究
- 批准号:81803854
- 批准年份:2018
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Understanding the Mechanisms and Consequences of Basement Membrane Aging in Vivo
了解体内基底膜老化的机制和后果
- 批准号:
10465010 - 财政年份:2023
- 资助金额:
$ 18.1万 - 项目类别:
A National NHP Embryo Resource of Human Genetic Disease Models
国家NHP人类遗传病模型胚胎资源
- 批准号:
10556087 - 财政年份:2023
- 资助金额:
$ 18.1万 - 项目类别:
Electrophysiologic characterization of circadian rhythms of prefrontal cortical network states in a diurnal rodent
昼夜啮齿动物前额皮质网络状态昼夜节律的电生理学特征
- 批准号:
10556475 - 财政年份:2023
- 资助金额:
$ 18.1万 - 项目类别:
Endothelial Cell Reprogramming in Familial Intracranial Aneurysm
家族性颅内动脉瘤的内皮细胞重编程
- 批准号:
10595404 - 财政年份:2023
- 资助金额:
$ 18.1万 - 项目类别:
Investigation of UBQLN2 in neuronal dysfunction and ALS-FTD
UBQLN2 在神经元功能障碍和 ALS-FTD 中的研究
- 批准号:
10638277 - 财政年份:2023
- 资助金额:
$ 18.1万 - 项目类别: