Pigment Regeneration Mechanisms in the Human Retina
人类视网膜色素再生机制
基本信息
- 批准号:10259840
- 负责人:
- 金额:$ 38.39万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-09-30 至 2025-06-30
- 项目状态:未结题
- 来源:
- 关键词:AffectAgeAge related macular degenerationAgingAnimal ModelAnimalsAutomobile DrivingAutopsyBiochemical ReactionBiological ModelsBiologyBlindnessCellsCollaborationsColor VisionsConeCritical PathwaysDark AdaptationDarknessDiseaseElderlyElectrodesElectrophysiology (science)ElectroretinographyEnvironmentEyeEye BanksFaceGeographic LocationsGoalsHealthHourHumanIndividualKineticsKnowledgeLightLight AdaptationsLightingMaintenanceMeasuresMediatingMethodsMolecularMuller&aposs cellMusNational Eye InstituteNatural regenerationNeural RetinaOrganOrgan DonorPanthera leoPathogenesisPathway interactionsPeripheralPhotonsPhotophobiaPhotoreceptorsPigment EpitheliumPigmentsPrimatesProcessProtocols documentationReadingRegenerative pathwayResearchRetinaRetinal ConeRetinal PigmentsRetinal maculaRodRodentRoleSalamanderSamplingStrategic PlanningStructure of retinal pigment epitheliumSuctionSunlightTechniquesTestingTimeTissue DonorsTissuesTransportationUtahVisionVision researchWorkbasedisorder of macula of retinaeffective therapyexperienceexperimental studyfovea centralishuman diseaseimprovedinsightmaculamacular dystrophynonhuman primatepreventresponseretinal rodstissue preparationvisual cycle
项目摘要
ABSTRACT
During the past 2-3 decades important work has been done to resolve the mechanisms of light and dark
adaptation as well as disease in the mammalian rod and cone photoreceptors using mouse as a model system.
However, the mouse is a nocturnal animal that lacks the macula, a specialized central region in primate retina
that provides high-acuity color vision critical for human everyday survival. Consequently, mechanisms of human
daytime vision or diseases that disrupt photoreceptors in the macula, such as Age-Related Macular
Degeneration (AMD), are challenging to study in mice. For example, there is no effective treatment for the dry
form of AMD, the most common cause of blindness among the elderly. Thus, there is a critical need to better
understand the biology of the photoreceptors in the human macula in health and disease. This is particularly true
of cone photoreceptors compared to rods that have been more extensively studied. Recent studies have
established both light-independent and light-dependent pigment regeneration pathways within the mouse retina
isolated from the pigment epithelium (RPE). These pathways regenerate pigment via Müller cells in cone-specific
pathways (light-independent and -dependent intraretinal visual cycles) or in the photoreceptor cells themselves
by a cell-autonomous regeneration mechanism. However, nothing is known about these mechanisms in the
human macula or fovea. The goal of this proposal is to determine the contribution of the RPE-independent
pigment regeneration pathways to the ability of cones to dark adapt quickly and maintain sensitivity in bright light
specifically in the human macula. Our central hypothesis is that the canonical visual cycle that operates via the
RPE is too slow to maintain vision in bright light or mediate dark adaptation during rapidly changing levels of
illumination in the human macula. The work is organized into two specific aims. These are to determine the
contribution of the light-independent intraretinal visual cycle (Aim I) and photic pigment regeneration pathways
(Aim II) to dark adaptation and maintenance of light sensitivity of human macular cones. The experiments will
employ ex vivo electroretinography and single cell suction electrode recordings. These techniques are well
suited for assessing the role of visual cycles and cell-autonomous pigment regeneration pathways in dark
adaptation and maintenance of light sensitivity, respectively. We will leverage our experience and collaborations
with Eye Banks that we have established during the past three years to develop donor criteria and protocols to
record light-evoked responses of macular cones from organ or research donor human eyes 1 – 5 hours
postmortem. Results of these studies will determine the contribution of different visual cycle pathways to human
vision mediated by the cones across geographical regions of the retina, including the fovea. This information will
provide a basis for studies to elucidate pathogenesis of macular dystrophies and potential targets to improve
vision or prevent vision loss in aging or diseased human eye.
抽象的
在过去的2-3年中
使用小鼠作为模型系统的哺乳动物棒和锥形感受器中的适应性以及疾病。
但是,小鼠是一种缺乏黄斑的夜间动物,黄斑是灵长类动物视网膜中的专门中央区域
这为人类每天生存至关重要的高品质色觉提供。因此,人类的机制
白天视觉或破坏黄斑中光感受器的疾病,例如与年龄相关的黄斑
退化(AMD)在小鼠中挑战。例如,干燥没有有效的治疗方法
AMD的形式,是古老的失明原因。那是迫切需要更好的
了解人类黄斑在健康和疾病中感光细胞的生物学。这尤其正确
与已经进行了更广泛研究的棒相比,锥形感受器的圆锥体光感受器。最近的研究
在小鼠视网膜内建立了独立和光依赖性色素再生途径
从色素上皮(RPE)中分离出来。这些途径通过锥体特异性的Müller细胞再生色素
途径(独立于光和依赖性的视图内视觉循环)或感光细胞本身
通过细胞自主再生机制。但是,对这些机制中的这些机制一无所知
人黄斑或中央凹。该提案的目的是确定独立于RPE的贡献
颜料再生途径,通往锥体的能力,快速适应黑暗并在明亮的光线下保持灵敏度
特别是在人类黄斑中。我们的中心假设是通过
RPE太慢,无法在明亮的光线下保持视力或在快速变化的水平中介导黑暗适应
人类黄斑中的照明。这项工作分为两个具体的目标。这些是要确定
光独立视觉周期(AIM I)和光色素再生途径的贡献
(AIM II)对人黄斑锥的光灵敏度的黑暗适应和维持。实验会
使用离体电视图和单细胞惊喜电极记录。这些技术很好
适合评估黑暗中视觉周期和细胞自主色素再生途径的作用
光灵敏度的适应和维持。我们将利用我们的经验和合作
在过去三年中,我们建立了眼库,以制定捐助者标准和协议
记录器官或研究供体人类眼睛1 - 5小时的黄斑锥的光诱发反应
验尸。这些研究的结果将确定不同的视觉周期途径对人的贡献
视觉由视网膜地理区域的圆锥体介导,包括中央凹。这些信息将
为阐明黄斑营养不良的发病机理和潜在靶标的研究提供了基础
视力或防止衰老或患病的人眼视力丧失。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Frans Vinberg其他文献
Frans Vinberg的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Frans Vinberg', 18)}}的其他基金
Functional plasticity in retinal degenerative disease
视网膜退行性疾病的功能可塑性
- 批准号:
10637293 - 财政年份:2023
- 资助金额:
$ 38.39万 - 项目类别:
Pigment Regeneration Mechanisms in the Human Retina
人类视网膜色素再生机制
- 批准号:
10671007 - 财政年份:2020
- 资助金额:
$ 38.39万 - 项目类别:
Pigment Regeneration Mechanisms in the Human Retina
人类视网膜色素再生机制
- 批准号:
10033250 - 财政年份:2020
- 资助金额:
$ 38.39万 - 项目类别:
Pigment Regeneration Mechanisms in the Human Retina
人类视网膜色素再生机制
- 批准号:
10450119 - 财政年份:2020
- 资助金额:
$ 38.39万 - 项目类别:
Assessment of Retinal Function in Health and Disease From Mouse To Human
评估从小鼠到人类的健康和疾病中的视网膜功能
- 批准号:
9535533 - 财政年份:2017
- 资助金额:
$ 38.39万 - 项目类别:
ASSESSMENT OF RETINAL FUNCTION IN HEALTH AND DISEASE FROM MOUSE TO HUMAN
从小鼠到人类的健康和疾病中的视网膜功能评估
- 批准号:
9249586 - 财政年份:2016
- 资助金额:
$ 38.39万 - 项目类别:
ASSESSMENT OF RETINAL FUNCTION IN HEALTH AND DISEASE FROM MOUSE TO HUMAN
从小鼠到人类的健康和疾病中的视网膜功能评估
- 批准号:
9088931 - 财政年份:2016
- 资助金额:
$ 38.39万 - 项目类别:
相似国自然基金
基于“肝—眼轴”的枸杞子及其复方防治青少年近视与年龄相关性黄斑变性的功效物质与生物学机制研究
- 批准号:U21A20408
- 批准年份:2021
- 资助金额:260.00 万元
- 项目类别:
基于“肝-眼轴”的枸杞子及其复方防治青少年近视与年龄相关性黄斑变性的功效物质与生物学机制研究
- 批准号:
- 批准年份:2021
- 资助金额:260 万元
- 项目类别:
PGF突变介导的周细胞与内皮细胞crosstalk在湿性年龄相关性黄斑变性中的作用及机制研究
- 批准号:82000898
- 批准年份:2020
- 资助金额:24 万元
- 项目类别:青年科学基金项目
组织病理结构与临床检查对照观察在指导渗出性年龄相关性黄斑变性诊治中的意义研究
- 批准号:81400409
- 批准年份:2014
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
基于多模态医学影像技术的湿性年龄相关性黄斑变性诊断与分析
- 批准号:81371629
- 批准年份:2013
- 资助金额:75.0 万元
- 项目类别:面上项目
相似海外基金
Atypical opsins and the OIR model of retinopathy of prematurity
非典型视蛋白与早产儿视网膜病变的 OIR 模型
- 批准号:
10675898 - 财政年份:2023
- 资助金额:
$ 38.39万 - 项目类别:
Deciphering the role of mitochondrial/autophagy dysfunction in regulating inflammatory processes during AMD pathogenesis
破译线粒体/自噬功能障碍在 AMD 发病机制中调节炎症过程中的作用
- 批准号:
10664118 - 财政年份:2023
- 资助金额:
$ 38.39万 - 项目类别:
OCT-based functional biomarkers for degenerative diseases of the photoreceptor-RPE-choroid neurovascular unit
基于 OCT 的光感受器-RPE-脉络膜神经血管单元退行性疾病的功能生物标志物
- 批准号:
10737548 - 财政年份:2023
- 资助金额:
$ 38.39万 - 项目类别:
Cytosolic SINE retrotransposable element cDNA and mitochondrial DNA in aging retina
衰老视网膜中的胞质 SINE 逆转录转座元件 cDNA 和线粒体 DNA
- 批准号:
10722062 - 财政年份:2023
- 资助金额:
$ 38.39万 - 项目类别:
Identifying mechanistic pathways underlying RPE pathogenesis in models of pattern dystrophy
识别模式营养不良模型中 RPE 发病机制的机制途径
- 批准号:
10636678 - 财政年份:2023
- 资助金额:
$ 38.39万 - 项目类别: