Pigment Regeneration Mechanisms in the Human Retina
人类视网膜色素再生机制
基本信息
- 批准号:10033250
- 负责人:
- 金额:$ 40.85万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-09-30 至 2025-06-30
- 项目状态:未结题
- 来源:
- 关键词:AffectAgeAge related macular degenerationAgingAnimal ModelAnimalsAutomobile DrivingAutopsyBiochemical ReactionBiological ModelsBiologyBlindnessCellsCollaborationsColor VisionsConeCritical PathwaysDark AdaptationDarknessDiseaseElderlyElectrodesElectrophysiology (science)ElectroretinographyEnvironmentEyeEye BanksFaceGeographic LocationsGoalsHealthHourHumanIndividualKineticsKnowledgeLightLight AdaptationsLightingMaintenanceMeasuresMediatingMethodsMolecularMuller&aposs cellMusNational Eye InstituteNatural regenerationNeural RetinaOrganOrgan DonorPanthera leoPathogenesisPathway interactionsPeripheralPhotonsPhotophobiaPhotoreceptorsPigment EpitheliumPigmentsPrimatesProcessProtocols documentationReadingResearchRetinaRetinal ConeRetinal PigmentsRetinal maculaRodRodentRoleSalamanderSamplingStrategic PlanningStructure of retinal pigment epitheliumSuctionTechniquesTestingThe SunTimeTissue DonorsTissuesTransportationUtahVisionVision researchWorkbasedisorder of macula of retinaeffective therapyexperienceexperimental studyfovea centralishuman diseaseimprovedinsightmaculamacular dystrophynonhuman primatepreventresponseretinal rodstissue preparationvisual cycle
项目摘要
ABSTRACT
During the past 2-3 decades important work has been done to resolve the mechanisms of light and dark
adaptation as well as disease in the mammalian rod and cone photoreceptors using mouse as a model system.
However, the mouse is a nocturnal animal that lacks the macula, a specialized central region in primate retina
that provides high-acuity color vision critical for human everyday survival. Consequently, mechanisms of human
daytime vision or diseases that disrupt photoreceptors in the macula, such as Age-Related Macular
Degeneration (AMD), are challenging to study in mice. For example, there is no effective treatment for the dry
form of AMD, the most common cause of blindness among the elderly. Thus, there is a critical need to better
understand the biology of the photoreceptors in the human macula in health and disease. This is particularly true
of cone photoreceptors compared to rods that have been more extensively studied. Recent studies have
established both light-independent and light-dependent pigment regeneration pathways within the mouse retina
isolated from the pigment epithelium (RPE). These pathways regenerate pigment via Müller cells in cone-specific
pathways (light-independent and -dependent intraretinal visual cycles) or in the photoreceptor cells themselves
by a cell-autonomous regeneration mechanism. However, nothing is known about these mechanisms in the
human macula or fovea. The goal of this proposal is to determine the contribution of the RPE-independent
pigment regeneration pathways to the ability of cones to dark adapt quickly and maintain sensitivity in bright light
specifically in the human macula. Our central hypothesis is that the canonical visual cycle that operates via the
RPE is too slow to maintain vision in bright light or mediate dark adaptation during rapidly changing levels of
illumination in the human macula. The work is organized into two specific aims. These are to determine the
contribution of the light-independent intraretinal visual cycle (Aim I) and photic pigment regeneration pathways
(Aim II) to dark adaptation and maintenance of light sensitivity of human macular cones. The experiments will
employ ex vivo electroretinography and single cell suction electrode recordings. These techniques are well
suited for assessing the role of visual cycles and cell-autonomous pigment regeneration pathways in dark
adaptation and maintenance of light sensitivity, respectively. We will leverage our experience and collaborations
with Eye Banks that we have established during the past three years to develop donor criteria and protocols to
record light-evoked responses of macular cones from organ or research donor human eyes 1 – 5 hours
postmortem. Results of these studies will determine the contribution of different visual cycle pathways to human
vision mediated by the cones across geographical regions of the retina, including the fovea. This information will
provide a basis for studies to elucidate pathogenesis of macular dystrophies and potential targets to improve
vision or prevent vision loss in aging or diseased human eye.
抽象的
在过去的2-3年里,人们在解决光与暗的机制方面做了重要的工作。
使用小鼠作为模型系统,研究哺乳动物视杆细胞和视锥细胞光感受器的适应和疾病。
然而,老鼠是一种夜行动物,缺乏黄斑,这是灵长类动物视网膜的一个特殊的中心区域
它提供了对人类日常生存至关重要的高敏锐度色觉,这是人类的机制。
日间视力或破坏黄斑感光细胞的疾病,例如年龄相关性黄斑
变性(AMD)在小鼠身上的研究具有挑战性,例如,没有有效的治疗方法。
AMD 是导致老年人失明的最常见原因,因此迫切需要更好的治疗方法。
了解人类黄斑中光感受器在健康和疾病中的生物学特性尤其如此。
最近的研究已经对视锥细胞与视杆细胞的比较进行了更广泛的研究。
在小鼠视网膜内建立了光独立和光依赖性色素再生途径
从色素上皮 (RPE) 中分离出来,这些途径通过锥体特异性的穆勒细胞再生色素。
通路(光独立和依赖的视网膜内视觉周期)或感光细胞本身
然而,人们对这些机制一无所知。
该提案的目标是确定与 RPE 无关的贡献。
色素再生途径使视锥细胞能够快速适应黑暗并在亮光下保持敏感度
特别是在人类黄斑中,我们的中心假设是规范的视觉循环通过
RPE 太慢,无法在强光下维持视力,也无法在快速变化的光线水平下介导暗适应。
这项工作分为两个具体目标。
光独立的视网膜内视觉周期(Aim I)和光色素再生途径的贡献
(目标二)人类黄斑锥体的暗适应和光敏感性的维持。
采用离体视网膜电图和单细胞抽吸电极记录这些技术很好。
适用于评估黑暗中视觉周期和细胞自主色素再生途径的作用
我们将分别利用我们的经验和合作来适应和维持光敏感性。
与我们在过去三年中建立的眼库一起制定捐赠标准和协议
记录来自器官或研究供体人眼的黄斑锥体的光诱发反应 1 – 5 小时
这些研究的结果将确定不同视觉周期通路对人类的贡献。
视觉由视网膜上的视锥细胞(包括中央凹)介导。
为阐明黄斑营养不良的发病机制和改善黄斑营养不良的潜在目标提供研究基础
视力或防止老化或患病的人眼视力丧失。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Frans Vinberg其他文献
Frans Vinberg的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Frans Vinberg', 18)}}的其他基金
Functional plasticity in retinal degenerative disease
视网膜退行性疾病的功能可塑性
- 批准号:
10637293 - 财政年份:2023
- 资助金额:
$ 40.85万 - 项目类别:
Pigment Regeneration Mechanisms in the Human Retina
人类视网膜色素再生机制
- 批准号:
10671007 - 财政年份:2020
- 资助金额:
$ 40.85万 - 项目类别:
Pigment Regeneration Mechanisms in the Human Retina
人类视网膜色素再生机制
- 批准号:
10259840 - 财政年份:2020
- 资助金额:
$ 40.85万 - 项目类别:
Pigment Regeneration Mechanisms in the Human Retina
人类视网膜色素再生机制
- 批准号:
10450119 - 财政年份:2020
- 资助金额:
$ 40.85万 - 项目类别:
Assessment of Retinal Function in Health and Disease From Mouse To Human
评估从小鼠到人类的健康和疾病中的视网膜功能
- 批准号:
9535533 - 财政年份:2017
- 资助金额:
$ 40.85万 - 项目类别:
ASSESSMENT OF RETINAL FUNCTION IN HEALTH AND DISEASE FROM MOUSE TO HUMAN
从小鼠到人类的健康和疾病中的视网膜功能评估
- 批准号:
9249586 - 财政年份:2016
- 资助金额:
$ 40.85万 - 项目类别:
ASSESSMENT OF RETINAL FUNCTION IN HEALTH AND DISEASE FROM MOUSE TO HUMAN
从小鼠到人类的健康和疾病中的视网膜功能评估
- 批准号:
9088931 - 财政年份:2016
- 资助金额:
$ 40.85万 - 项目类别:
相似国自然基金
基于“肝-眼轴”的枸杞子及其复方防治青少年近视与年龄相关性黄斑变性的功效物质与生物学机制研究
- 批准号:
- 批准年份:2021
- 资助金额:260 万元
- 项目类别:
PGF突变介导的周细胞与内皮细胞crosstalk在湿性年龄相关性黄斑变性中的作用及机制研究
- 批准号:82000898
- 批准年份:2020
- 资助金额:24 万元
- 项目类别:青年科学基金项目
组织病理结构与临床检查对照观察在指导渗出性年龄相关性黄斑变性诊治中的意义研究
- 批准号:81400409
- 批准年份:2014
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
基于多模态医学影像技术的湿性年龄相关性黄斑变性诊断与分析
- 批准号:81371629
- 批准年份:2013
- 资助金额:75.0 万元
- 项目类别:面上项目
mTOR-自噬通路调节视网膜脂褐素代谢及其在年龄相关性黄斑变性中的作用与机制研究
- 批准号:81300785
- 批准年份:2013
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Atypical opsins and the OIR model of retinopathy of prematurity
非典型视蛋白与早产儿视网膜病变的 OIR 模型
- 批准号:
10675898 - 财政年份:2023
- 资助金额:
$ 40.85万 - 项目类别:
Deciphering the role of mitochondrial/autophagy dysfunction in regulating inflammatory processes during AMD pathogenesis
破译线粒体/自噬功能障碍在 AMD 发病机制中调节炎症过程中的作用
- 批准号:
10664118 - 财政年份:2023
- 资助金额:
$ 40.85万 - 项目类别:
OCT-based functional biomarkers for degenerative diseases of the photoreceptor-RPE-choroid neurovascular unit
基于 OCT 的光感受器-RPE-脉络膜神经血管单元退行性疾病的功能生物标志物
- 批准号:
10737548 - 财政年份:2023
- 资助金额:
$ 40.85万 - 项目类别:
Identifying mechanistic pathways underlying RPE pathogenesis in models of pattern dystrophy
识别模式营养不良模型中 RPE 发病机制的机制途径
- 批准号:
10636678 - 财政年份:2023
- 资助金额:
$ 40.85万 - 项目类别:
Regulators of Photoreceptor Aerobic Glycolysis in Retinal Health and Disease
视网膜健康和疾病中光感受器有氧糖酵解的调节因子
- 批准号:
10717825 - 财政年份:2023
- 资助金额:
$ 40.85万 - 项目类别: