ENIGMA-COINSTAC: Advanced Worldwide Transdiagnostic Analysis of Valence System Brain CircuitsPD

ENIGMA-COINSTAC:价系统脑回路的先进全球跨诊断分析PD

基本信息

  • 批准号:
    10252236
  • 负责人:
  • 金额:
    $ 2.61万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-08-02 至 2024-05-31
  • 项目状态:
    已结题

项目摘要

Project Summary The Research Domain Criteria (RDoC) matrix delineates general constructs, that reflect basic dimensions of human behavioral functioning that can range from normal to abnormal. The RDoC matrix organizes these constructs by domains (e.g., positive valence and social processing systems) and units of analysis (i.e., from genes, to molecules, cells, circuits, physiology, behavior, self-report, paradigms) such that they can be systematically studied at multiple levels of analysis. Most clinical research studies, to date, have employed standardized symptom assessments, which are often disorder specific and not directly linked to RDoC constructs. In schizophrenia (SZ), negative symptom domains, including avolition, anhedonia, asociality, alogia, and blunted affect (5 factor model), have been studied in some detail. Recently a theoretical mapping between negative symptom domains and RDoC constructs linked avolition, anhedonia, and avolition to positive valence system, and alogia and flat affect to the social processes system. However, the proposed mappings between behavior (negative symptom domains) and brain structures/circuitry have not been tested or validated; either in SZ, or in other neuropsychiatric illnesses such as bipolar disorder (BD) or major depressive disorder (MDD). Earlier work suggested a more parsimonious 2-factor model of negative symptoms, in which avolition, anhedonia, and asociality were linked to a motivation and pleasure (MAP) factor, and and blunted affect andalogia linked to an expressive (EXP) factor. Of note, with the exception of asociality, these factors appear to map onto positive valence and social processes systems in the RDoC matrix; lending additional support to the proposed RDoC matrix structure related to negative symptoms. Mappings between different interpretations of negative symptom domains (e.g., 5-factor and 2-factor models) and brain structures/circuitry have also not been conducted. Leveraging the worldwide collaborative ENIGMA (Enhancing Neuro Imaging Genetics through Meta-Analysis) consortium and the COINSTAC (Collaborative Informatics and Neuroimaging Suite Toolkit for Anonymous Computation) computational platform, this proposal will combine neuroimaging and clinical measures of negative symptoms across schizophrenia (SZ), bipolar disorder (BD), and major depressive disorder (MDD), to validate and extend the RDoC matrix representation of negative symptom domains in major mental illness. We extract joint multimodal features for each separable (sub)construct, evaluate them for their relationship with the behavior, and then use them in a subsequent cross-validation analysis. Subsequently, we evaluate their single subject prediction power. Through these powerful computational methods, we will map structural, diffusion tensor imaging, and resting state functional magnetic resonance imaging measures of brain structures/circuitry to negative symptom behavioral measures. Successful completion of this proposal’s aims will identify distinct and overlapping neural circuits associated with negative symptom domains, will test integrative models of functioning, and identify dysregulation in psychopathology-related mechanisms that cut across traditional diagnostic boundaries.
项目概要 研究领域标准 (RDoC) 矩阵描绘了反映人类基本维度的一般结构 RDoC 矩阵按领域组织这些结构。 (例如,正价和社会处理系统)和分析单位(即从基因到分子、细胞、电路、 生理学、行为、自我报告、范例),以便可以在多个分析层次上系统地研究它们。 迄今为止,大多数临床研究都采用了标准化的症状评估,这些评估通常是针对特定疾病的 与 RDoC 结构没有直接关系。在精神分裂症 (SZ) 中,阴性症状包括无欲、 最近对快感缺失、不社交、失语和情感迟钝(五因素模型)进行了一些详细的理论研究。 阴性症状域和 RDoC 结构之间的映射将无欲、快感缺失和无欲与阳性联系起来 然而,所提出的行为之间的映射。 (阴性症状域)和大脑结构/电路尚未在深圳或其他地区进行测试或验证; 早期的研究表明,双相情感障碍(BD)或重度抑郁症(MDD)等神经精神疾病。 更简约的阴性症状双因素模型,其中意志力、快感缺乏和社交性与 动机和愉悦(MAP)因素,以及与表达(EXP)因素相关的钝化影响和语言。 除了反社会性之外,这些因素似乎映射到 RDoC 中的正价和社会过程系统 矩阵;为拟议的与阴性症状之间的映射相关的 RDoC 矩阵结构提供额外支持。 对阴性症状域(例如,5 因素和 2 因素模型)和大脑结构/电路的不同解释 还没有利用全球协作 ENIGMA(增强神经成像遗传学)进行。 通过荟萃分析)联盟和 COINSTAC(协作信息学和神经影像套件工具包) 匿名计算)计算平台,该提案将结合神经影像学和临床测量 精神分裂症 (SZ)、双相情感障碍 (BD) 和重度抑郁症 (MDD) 的阴性症状,以验证 并扩展主要精神疾病阴性症状域的 RDoC 矩阵表示,我们提取联合。 每个可分离(子)结构的多模态特征,评估它们与行为的关系,然后使用 随后,我们在随后的交叉验证分析中评估了他们的单一受试者预测能力。 这些强大的计算方法,我们将绘制结构图、扩散张量成像和静息态泛函 大脑结构/电路的磁共振成像测量阴性症状行为测量成功。 完成该提案的目标将识别与阴性症状相关的不同且重叠的神经回路 域,将测试功能的综合模型,并识别精神病理学相关机制的失调 跨越了传统诊断的界限。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

VINCE D CALHOUN其他文献

VINCE D CALHOUN的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('VINCE D CALHOUN', 18)}}的其他基金

ENIGMA-COINSTAC: Advanced Worldwide Transdiagnostic Analysis of Valence System Brain Circuits
ENIGMA-COINSTAC:价系统脑回路的先进全球跨诊断分析
  • 批准号:
    10410073
  • 财政年份:
    2019
  • 资助金额:
    $ 2.61万
  • 项目类别:
ENIGMA-COINSTAC: Advanced Worldwide Transdiagnostic Analysis of Valence System Brain Circuit
ENIGMA-COINSTAC:价系统脑回路的先进全球跨诊断分析
  • 批准号:
    10656608
  • 财政年份:
    2019
  • 资助金额:
    $ 2.61万
  • 项目类别:
A decentralized macro and micro gene-by-environment interaction analysis of substance use behavior and its brain biomarkers
物质使用行为及其大脑生物标志物的分散宏观和微观基因与环境相互作用分析
  • 批准号:
    10197867
  • 财政年份:
    2019
  • 资助金额:
    $ 2.61万
  • 项目类别:
A decentralized macro and micro gene-by-environment interaction analysis of substance use behavior and its brain biomarkers
物质使用行为及其大脑生物标志物的分散宏观和微观基因与环境相互作用分析
  • 批准号:
    10443779
  • 财政年份:
    2019
  • 资助金额:
    $ 2.61万
  • 项目类别:
A decentralized macro and micro gene-by-environment interaction analysis of substance use behavior and its brain biomarkers
物质使用行为及其大脑生物标志物的分散宏观和微观基因与环境相互作用分析
  • 批准号:
    9811339
  • 财政年份:
    2019
  • 资助金额:
    $ 2.61万
  • 项目类别:
Flexible multivariate models for linking multi-scale connectome and genome data in Alzheimer's disease and related disorders
用于连接阿尔茨海默病和相关疾病的多尺度连接组和基因组数据的灵活多变量模型
  • 批准号:
    10157432
  • 财政年份:
    2019
  • 资助金额:
    $ 2.61万
  • 项目类别:
Mapping the developing infant connectome
绘制发育中的婴儿连接组图
  • 批准号:
    10413004
  • 财政年份:
    2019
  • 资助金额:
    $ 2.61万
  • 项目类别:
A decentralized macro and micro gene-by-environment interaction analysis of substance use behavior and its brain biomarkers
物质使用行为及其大脑生物标志物的分散宏观和微观基因与环境相互作用分析
  • 批准号:
    10645089
  • 财政年份:
    2019
  • 资助金额:
    $ 2.61万
  • 项目类别:
COINSTAC: decentralized, scalable analysis of loosely coupled data
COINSTAC:松散耦合数据的去中心化、可扩展分析
  • 批准号:
    9268713
  • 财政年份:
    2015
  • 资助金额:
    $ 2.61万
  • 项目类别:
COINSTAC 2.0: decentralized, scalable analysis of loosely coupled data
COINSTAC 2.0:松散耦合数据的去中心化、可扩展分析
  • 批准号:
    10622017
  • 财政年份:
    2015
  • 资助金额:
    $ 2.61万
  • 项目类别:

相似国自然基金

员工算法规避行为的内涵结构、量表开发及多层次影响机制:基于大(小)数据研究方法整合视角
  • 批准号:
    72372021
  • 批准年份:
    2023
  • 资助金额:
    40 万元
  • 项目类别:
    面上项目
算法鸿沟影响因素与作用机制研究
  • 批准号:
    72304017
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
算法规范对知识型零工在客户沟通中情感表达的动态影响调查:规范焦点理论视角
  • 批准号:
    72302005
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于先进算法和行为分析的江南传统村落微气候的评价方法、影响机理及优化策略研究
  • 批准号:
    52378011
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
算法人力资源管理对员工算法应对行为和工作绩效的影响:基于员工认知与情感的路径研究
  • 批准号:
    72372070
  • 批准年份:
    2023
  • 资助金额:
    40 万元
  • 项目类别:
    面上项目

相似海外基金

Multi-modal Tracking of In Vivo Skeletal Structures and Implants
体内骨骼结构和植入物的多模式跟踪
  • 批准号:
    10839518
  • 财政年份:
    2023
  • 资助金额:
    $ 2.61万
  • 项目类别:
ETAware: Continuous monitoring of the functional impact of essential tremor
ETAware:持续监测特发性震颤的功能影响
  • 批准号:
    10819790
  • 财政年份:
    2023
  • 资助金额:
    $ 2.61万
  • 项目类别:
A Multi-Modal Wearable Sensor for Early Detection of Cognitive Decline and Remote Monitoring of Cognitive-Motor Decline Over Time
一种多模态可穿戴传感器,用于早期检测认知衰退并远程监控认知运动随时间的衰退
  • 批准号:
    10765991
  • 财政年份:
    2023
  • 资助金额:
    $ 2.61万
  • 项目类别:
Molecular origins and evolution to chemoresistance in germ cell tumors
生殖细胞肿瘤中化学耐药性的分子起源和进化
  • 批准号:
    10443070
  • 财政年份:
    2023
  • 资助金额:
    $ 2.61万
  • 项目类别:
MASS: Muscle and disease in postmenopausal women
MASS:绝经后妇女的肌肉和疾病
  • 批准号:
    10736293
  • 财政年份:
    2023
  • 资助金额:
    $ 2.61万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了