ETAware: Continuous monitoring of the functional impact of essential tremor
ETAware:持续监测特发性震颤的功能影响
基本信息
- 批准号:10819790
- 负责人:
- 金额:$ 28.95万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-30 至 2024-09-29
- 项目状态:已结题
- 来源:
- 关键词:Activities of Daily LivingAffectAlgorithmsAlzheimer&aposs DiseaseCaringClinic VisitsClinicalClinical TrialsClinical assessmentsDataData CollectionDecision MakingDeep Brain StimulationDevelopmentDevice ApprovalDiseaseDisease ManagementDisparity populationDrug Approval ProcessesDrug usageDystoniaEffectivenessEffectiveness of InterventionsEssential TremorEvaluationFingersFocused UltrasoundImprove AccessIndividualJudgmentLimb TremorsLiving WillsLower ExtremityMagnetic Resonance ImagingMeasurementMeasuresMedicalMonitorMonitoring Clinical TrialsMotionMovement DisordersObservational StudyOperative Surgical ProceduresOrthostatic HypotensionOutcomeOutcome MeasureOutputParkinson DiseaseParticipantPatient CarePatientsPerformancePersonsPharmaceutical PreparationsPhasePhysical activityPrimidoneProcessPropranololQuality of lifeQuestionnairesRefractoryResearchResearch PersonnelRestRural PopulationSensitivity and SpecificitySeveritiesStrokeSymptomsSystemTechnologyTherapeutic InterventionTimeTitrationsTremorUnderserved PopulationUpper ExtremityValidationVisualWalkingWorkclinical decision-makingcommercializationcostdesigneffectiveness evaluationevidence basegeographic disparityhealth care availabilityimprovedinnovationkinematicsmachine learning modelmobile applicationmotion sensornovel therapeuticspatient responsesensorsignal processingsuccesssymptomatic improvementtreatment optimizationwearable device
项目摘要
Summary
The objective is to design and clinically assess ETAware, an adaptive, wearable system to monitor the impact
of tremor on activities of daily living (ADL) for the evaluation and optimization of therapeutic interventions in
patients with essential tremor (ET) as there is currently no technology that can assess the functional impact
of tremor on ADL. ETAware will focus on ET, the most common movement disorder, affecting 10 million people
in the US; however, commercially, the system will have applications for other conditions that hinder engagement
in daily activities and affect quality of life. Currently, propranolol and primidone are the two main drugs used for
treating essential tremor, while surgical interventions such as deep brain stimulation (DBS), and MRI-guided
focused ultrasound (MgFUS) are warranted in medically refractory ET. Nevertheless, patients' responses to all
forms of therapy can vary substantially, necessitating the sequential use of different drugs. To evaluate the
effectiveness of interventions, it is critical to quantify both tremor severity and its impact on ADL in ET.
Currently, to show clinical improvement, subjective questionnaires and rating scales are used. However,
these questionnaires and rating scales are subject to clinical judgment and bias, only provide information at a
discrete point in time, and cannot be utilized for daily continuous monitoring. ETAware will continuously monitor
tremor severity AND the functional impact of tremor on ADL, which will help clinicians with therapy adjustments,
help patients take control of their disease management, and improve research and clinical trials by providing an
objective quality of life measure and minimizing the costs associated with clinic visits and the administration of
questionnaires and rating scales.
We have previously commercialized wearables and mobile apps that are currently used in drug clinical trials
for monitoring upper limb tremor severity. However, the existing systems do not quantify lower limb tremor or
give any information on the impact of tremor on ADL. The primary innovations of ETAware are 1) signal
processing algorithms to analyze motion sensor data and provide continuous measurements of the functional
impact of tremor on ADL, 2) a system for clinicians to optimize therapy, researchers to evaluate and develop
new therapies, and patients to stay involved in their disease management.
To demonstrate feasibility in Phase I, motion data will be collected from 20 patients with essential tremor
while they are performing TETRAS-based tremor performance and ADL tasks as well additional functional tasks.
Success criteria include 1) development and validation of signal processing algorithms that correlate (r ≥ 0.76,
root-mean-square error ≤0.5) kinematic data with clinician's TETRAS-based tremor performance and ADL
scores, and 2) development and validation of machine learning models that accurately (sensitivity/
specificity/AUC > 0.8) identify physical activities such as walking, sitting, standing, getting out of a chair, going
up and down stairs.
概括
目标是设计 ETAware 并进行临床评估,这是一种自适应可穿戴系统,用于监测影响
震颤对日常生活活动 (ADL) 的影响,用于评估和优化治疗干预措施
特发性震颤 (ET) 患者,因为目前没有技术可以评估功能影响
ADL 上的震颤将重点关注 ET,这是最常见的运动障碍,影响着 1000 万人。
在美国;然而,在商业上,该系统将适用于阻碍参与的其他条件
目前,普萘洛尔和扑米酮是用于日常活动并影响生活质量的两种主要药物。
治疗特发性震颤,同时进行深部脑刺激 (DBS) 和 MRI 引导等手术干预
聚焦超声 (MgFUS) 对于医学难治性 ET 是必要的,但患者对所有治疗的反应都不同。
治疗的形式可能有很大差异,因此需要顺序使用不同的药物。
干预措施的有效性,量化震颤严重程度及其对 ET 中 ADL 的影响至关重要。
目前,为了显示临床改善,使用主观问卷和评分量表。
这些问卷和评级量表受到临床判断和偏见的影响,仅提供一定程度的信息
离散时间点,无法用于日常连续监控,ETAware 将持续监控。
震颤的严重程度以及震颤对 ADL 的功能影响,这将有助于依从者调整治疗,
帮助患者控制他们的疾病管理,并通过提供
客观的生活质量衡量,并最大限度地减少与诊所就诊和管理相关的成本
问卷和评级量表。
我们之前已经将可穿戴设备和移动应用程序商业化,目前用于药物临床试验
用于监测上肢震颤严重程度然而,现有系统无法量化下肢震颤或
提供有关震颤对 ADL 影响的任何信息 ETAware 的主要创新是 1) 信号。
处理算法来分析运动传感器数据并提供功能的连续测量
震颤对 ADL 的影响,2) 一个供忠诚者优化治疗、供研究人员评估和开发的系统
新疗法,以及患者继续参与疾病管理。
为了证明第一阶段的可行性,将从 20 名特发性震颤患者收集运动数据
同时他们正在执行基于 TETRAS 的震颤性能和 ADL 任务以及其他功能任务。
成功标准包括 1) 开发和验证相关的信号算法处理(r ≥ 0.76,
均方根误差≤0.5)运动学数据与临床医生基于TETRAS的震颤表现和ADL
分数,以及 2) 开发和验证准确(灵敏度/
特异性/AUC > 0.8)识别身体活动,例如行走、坐着、站立、从椅子上站起来、走动
上下楼梯。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Rabie Fadil其他文献
Rabie Fadil的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
员工算法规避行为的内涵结构、量表开发及多层次影响机制:基于大(小)数据研究方法整合视角
- 批准号:72372021
- 批准年份:2023
- 资助金额:40 万元
- 项目类别:面上项目
算法鸿沟影响因素与作用机制研究
- 批准号:72304017
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
算法规范对知识型零工在客户沟通中情感表达的动态影响调查:规范焦点理论视角
- 批准号:72302005
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于先进算法和行为分析的江南传统村落微气候的评价方法、影响机理及优化策略研究
- 批准号:52378011
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
算法人力资源管理对员工算法应对行为和工作绩效的影响:基于员工认知与情感的路径研究
- 批准号:72372070
- 批准年份:2023
- 资助金额:40 万元
- 项目类别:面上项目
相似海外基金
Multi-modal Tracking of In Vivo Skeletal Structures and Implants
体内骨骼结构和植入物的多模式跟踪
- 批准号:
10839518 - 财政年份:2023
- 资助金额:
$ 28.95万 - 项目类别:
A Multi-Modal Wearable Sensor for Early Detection of Cognitive Decline and Remote Monitoring of Cognitive-Motor Decline Over Time
一种多模态可穿戴传感器,用于早期检测认知衰退并远程监控认知运动随时间的衰退
- 批准号:
10765991 - 财政年份:2023
- 资助金额:
$ 28.95万 - 项目类别:
Molecular origins and evolution to chemoresistance in germ cell tumors
生殖细胞肿瘤中化学耐药性的分子起源和进化
- 批准号:
10443070 - 财政年份:2023
- 资助金额:
$ 28.95万 - 项目类别:
Effect of Osseointegrated Prostheses on the Pathogenesis of Hip Osteoarthritis in Patients with Lower Limb Loss
骨整合假体对下肢丧失患者髋骨关节炎发病机制的影响
- 批准号:
10662142 - 财政年份:2023
- 资助金额:
$ 28.95万 - 项目类别:
MASS: Muscle and disease in postmenopausal women
MASS:绝经后妇女的肌肉和疾病
- 批准号:
10736293 - 财政年份:2023
- 资助金额:
$ 28.95万 - 项目类别: