COINSTAC 2.0: decentralized, scalable analysis of loosely coupled data
COINSTAC 2.0:松散耦合数据的去中心化、可扩展分析
基本信息
- 批准号:10269008
- 负责人:
- 金额:$ 61.79万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-07-01 至 2025-06-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Project Summary/Abstract
The brain imaging community is greatly benefiting from extensive data sharing efforts currently underway.
However, there is still a major gap in that much data is still not openly shareable, which we propose to address.
In addition, current approaches to data sharing often include significant logistical hurdles both for the investigator
sharing the data (e.g. often times multiple data sharing agreements and approvals are required from US and
international institutions) as well as for the individual requesting the data (e.g. substantial computational re-
sources and time is needed to pool data from large studies with local study data). This needs to change, so that
the scientific community can create a venue where data can be collected, managed, widely shared and analyzed
while also opening up access to the (many) data sets which are not currently available (see overview on this
from our group7). The large amount of existing data requires an approach that can analyze data in a distributed
way while (if required) leaving control of the source data with the individual investigator or the data host; this
motivates a dynamic, decentralized way of approaching large scale analyses. During the previous funding
period, we developed a peer-to-peer system called the Collaborative Informatics and Neuroimaging Suite Toolkit
for Anonymous Computation (COINSTAC). Our system provides an independent, open, no-strings-attached tool
that performs analysis on datasets distributed across different locations. Thus, the step of actually aggregating
data is avoided, while the strength of large-scale analyses can be retained. During this new phase we respond
to the need for advanced algorithms such as linear mixed effects models and deep learning, by proposing to
develop decentralized models for these approaches and also implement a fully scalable cloud-based framework
with enhanced security features. To achieve this, in Aim 1, we will incorporate the necessary functionality to
scale up analyses via the ability to work with either local or commercial private cloud environments, together with
advanced visualization, quality control, and privacy and security features. This suite of new functions will open
the floodgates for the use of COINSTAC by the larger neuroscience community to enable new discovery and
analysis of unprecedented amounts of brain imaging data located throughout the world. We will also improve
usability, training materials, engage the community in contributing to the open source code base, and ultimately
facilitate the use of COINSTAC's tools for additional science and discovery in a broad range of applications. In
Aim 2 we will extend the framework to handle powerful algorithms such as linear mixed effects models and deep
learning, and to perform meta-learning for leveraging and updating fit models. And finally, in Aim 3, we will test
this new functionality through a partnership with the worldwide ENIGMA addiction group, which is currently not
able to perform advanced machine learning analyses on data that cannot be centrally located. We will evaluate
the impact of 6 main classes of substances of abuse (e.g. methamphetamines, cocaine, cannabis, nicotine,
opiates, alcohol and their combinations) using the new developed functionality.
3
项目摘要/摘要
大脑成像社区从目前正在进行的广泛数据共享工作中受益匪浅。
但是,仍然存在一个很大的差距,因为我们建议解决这一数据仍然不可公开共享。
此外,当前的数据共享方法通常包括研究人员的重大后勤障碍
共享数据(例如,通常需要多个数据共享协议和批准。
国际机构)以及要求数据的个人(例如
需要来源和时间来汇总大型研究数据的数据)。这需要改变,以便
科学界可以创建一个可以收集,管理,广泛共享和分析数据的场所
同时还可以打开对当前尚不可用的(许多)数据集的访问(请参阅此处的概述
来自我们的组7)。大量现有数据需要一种可以分析分布式数据的方法
(如果需要)将源数据的控制权与单个研究者或数据主机保留;这
激励一种动态的,分散的方法来进行大规模分析。在以前的资金中
时期,我们开发了一个称为协作信息学和神经影像学套件工具包的点对点系统
用于匿名计算(CoinStac)。我们的系统提供了独立,开放,无弦的连接工具
在分布在不同位置的数据集上进行分析。因此,实际汇总的步骤
避免了数据,而大规模分析的强度可以保留。在这个新阶段,我们回应
对于需要高级算法(例如线性混合效应模型和深度学习)的需求,提议
为这些方法开发分散的模型,并实施一个完全可扩展的基于云的框架
具有增强的安全功能。为了实现这一目标,在AIM 1中,我们将结合必要的功能
通过与本地或商业私有云环境合作的能力来扩展分析
高级可视化,质量控制以及隐私和安全功能。这套新功能将打开
较大的神经科学社区使用Coinstac的闸门,以实现新发现和
分析世界各地的空前数量的大脑成像数据。我们还将改善
可用性,培训材料,让社区参与开源代码基础的贡献,并最终
促进在广泛的应用中使用Coinstac的工具进行其他科学和发现。在
目标2我们将扩展框架以处理强大的算法,例如线性混合效应模型和深层
学习,并为利用和更新拟合模型执行元学习。最后,在AIM 3中,我们将测试
通过与全球谜上瘾小组的合作伙伴关系,这种新功能
能够对无法集中位置的数据进行高级机器学习分析。我们将评估
6种主要滥用物质的影响(例如甲基苯丙胺,可卡因,大麻,尼古丁,
阿片类药物,酒精及其组合)使用新的开发功能。
3
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

暂无数据
数据更新时间:2024-06-01
VINCE D CALHOUN的其他基金
ENIGMA-COINSTAC: Advanced Worldwide Transdiagnostic Analysis of Valence System Brain Circuits
ENIGMA-COINSTAC:价系统脑回路的先进全球跨诊断分析
- 批准号:1041007310410073
- 财政年份:2019
- 资助金额:$ 61.79万$ 61.79万
- 项目类别:
ENIGMA-COINSTAC: Advanced Worldwide Transdiagnostic Analysis of Valence System Brain Circuit
ENIGMA-COINSTAC:价系统脑回路的先进全球跨诊断分析
- 批准号:1065660810656608
- 财政年份:2019
- 资助金额:$ 61.79万$ 61.79万
- 项目类别:
ENIGMA-COINSTAC: Advanced Worldwide Transdiagnostic Analysis of Valence System Brain CircuitsPD
ENIGMA-COINSTAC:价系统脑回路的先进全球跨诊断分析PD
- 批准号:1025223610252236
- 财政年份:2019
- 资助金额:$ 61.79万$ 61.79万
- 项目类别:
A decentralized macro and micro gene-by-environment interaction analysis of substance use behavior and its brain biomarkers
物质使用行为及其大脑生物标志物的分散宏观和微观基因与环境相互作用分析
- 批准号:1019786710197867
- 财政年份:2019
- 资助金额:$ 61.79万$ 61.79万
- 项目类别:
A decentralized macro and micro gene-by-environment interaction analysis of substance use behavior and its brain biomarkers
物质使用行为及其大脑生物标志物的分散宏观和微观基因与环境相互作用分析
- 批准号:1044377910443779
- 财政年份:2019
- 资助金额:$ 61.79万$ 61.79万
- 项目类别:
A decentralized macro and micro gene-by-environment interaction analysis of substance use behavior and its brain biomarkers
物质使用行为及其大脑生物标志物的分散宏观和微观基因与环境相互作用分析
- 批准号:98113399811339
- 财政年份:2019
- 资助金额:$ 61.79万$ 61.79万
- 项目类别:
Flexible multivariate models for linking multi-scale connectome and genome data in Alzheimer's disease and related disorders
用于连接阿尔茨海默病和相关疾病的多尺度连接组和基因组数据的灵活多变量模型
- 批准号:1015743210157432
- 财政年份:2019
- 资助金额:$ 61.79万$ 61.79万
- 项目类别:
Mapping the developing infant connectome
绘制发育中的婴儿连接组图
- 批准号:1041300410413004
- 财政年份:2019
- 资助金额:$ 61.79万$ 61.79万
- 项目类别:
A decentralized macro and micro gene-by-environment interaction analysis of substance use behavior and its brain biomarkers
物质使用行为及其大脑生物标志物的分散宏观和微观基因与环境相互作用分析
- 批准号:1064508910645089
- 财政年份:2019
- 资助金额:$ 61.79万$ 61.79万
- 项目类别:
COINSTAC: decentralized, scalable analysis of loosely coupled data
COINSTAC:松散耦合数据的去中心化、可扩展分析
- 批准号:92687139268713
- 财政年份:2015
- 资助金额:$ 61.79万$ 61.79万
- 项目类别:
相似国自然基金
采用新型视觉-电刺激配对范式长期、特异性改变成年期动物视觉系统功能可塑性
- 批准号:32371047
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
破解老年人数字鸿沟:老年人采用数字技术的决策过程、客观障碍和应对策略
- 批准号:72303205
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
通过抑制流体运动和采用双能谱方法来改进烧蚀速率测量的研究
- 批准号:12305261
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
采用多种稀疏自注意力机制的Transformer隧道衬砌裂缝检测方法研究
- 批准号:62301339
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
政策激励、信息传递与农户屋顶光伏技术采用提升机制研究
- 批准号:72304103
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
High-throughput thermodynamic and kinetic measurements for variant effects prediction in a major protein superfamily
用于预测主要蛋白质超家族变异效应的高通量热力学和动力学测量
- 批准号:1075237010752370
- 财政年份:2023
- 资助金额:$ 61.79万$ 61.79万
- 项目类别:
Implementing a patient navigation intervention across a health system to address treatment entry inequities
在整个卫生系统中实施患者导航干预,以解决治疗进入不平等问题
- 批准号:1081262810812628
- 财政年份:2023
- 资助金额:$ 61.79万$ 61.79万
- 项目类别:
Dissemination and implementation of DIGEST™ as an evidence-based measurement tool for dysphagia in cancer
传播和实施 DIGEST™ 作为癌症吞咽困难的循证测量工具
- 批准号:1058482410584824
- 财政年份:2023
- 资助金额:$ 61.79万$ 61.79万
- 项目类别:
Promoting Parallel Parenting: Putting Children First during High-Conflict Divorce and Separation (PCF)
促进平行养育:在高度冲突的离婚和分居期间将孩子放在第一位(PCF)
- 批准号:1075787610757876
- 财政年份:2023
- 资助金额:$ 61.79万$ 61.79万
- 项目类别:
Administrative Supplement for Peer-Delivered and Technology-Assisted Integrated Illness Management and Recovery
同行交付和技术辅助的综合疾病管理和康复的行政补充
- 批准号:1081129210811292
- 财政年份:2023
- 资助金额:$ 61.79万$ 61.79万
- 项目类别: