Integrative And Molecular Studies Of Pain And Pain Control
疼痛和疼痛控制的综合和分子研究
基本信息
- 批准号:10262642
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:
- 资助国家:美国
- 起止时间:至
- 项目状态:未结题
- 来源:
- 关键词:Absence of pain sensationAcute PainAddressAdvanced Malignant NeoplasmAffectAgonistAnabolismAnalgesicsAnimalsAxonBasic ScienceBehavioral MechanismsBiologicalBiomedical EngineeringBiopsyBrainCalciumCalcium ionCanis familiarisCarrageenanCellsCerebrospinal FluidClientClinicalClinical ProtocolsClinical ResearchClinical TrialsCodeCollaborationsCopy Number PolymorphismCoupledDataDegenerative polyarthritisDiseaseDorsalDoseEthanolaminesExotoxinsFatty AcidsFoundationsGene ExpressionGenerationsGenesGeneticGenetic VariationGoalsHealth SciencesHumanHyperalgesiaImmuneIn VitroInflammationInflammatoryInheritedInjectionsInstitutional Review BoardsInterruptionInterventionIntra-Articular InjectionsIntractable PainInvestigationIon ChannelJointsKnowledgeLinkLinoleic AcidsLipidsLongitudinal StudiesMeasuresMechanicsMessenger RNAMethodsModelingModificationMolecularMolecular BiologyMotorNerveNerve EndingsNerve FibersNeuraxisNeuronal PlasticityNeuronsNociceptionOregonPainPain managementPathologicPathway interactionsPatientsPeptidesPeripheralPeripheral NervesPeripheral Nervous System DiseasesPersistent painPharmacologic SubstancePharmacologyPhase I Clinical TrialsPhase III Clinical TrialsPhysiological ProcessesPopulationPosterior Horn CellsPostoperative PainPostoperative PeriodPre-Clinical ModelPreparationProcessProprioceptionProtein BiosynthesisProteinsProtocols documentationPruritusPseudomonasPublicationsPublishingRNARattusReportingResearchResiniferatoxinRodentRouteSamplingSensorySensory GangliaSerious Adverse EventSignal PathwaySignal TransductionSiteSkinSpinal CordSpinal GangliaSpinal cord posterior hornStimulusStructure of trigeminal ganglionSubcutaneous InjectionsSubstance PSubstance P ReceptorSurgical OncologySurgical incisionsSurgical woundSymptomsSynapsesSystemTRPV1 geneTestingTherapeutic AgentsThoracic Surgical ProceduresTimeTissue SampleTissuesTouch sensationTransducersTranslatingTranslational ResearchTreatment ProtocolsTrigeminal NeuralgiaUniversitiesVeterinary MedicineVeterinary SchoolsWeight GainWeight-Bearing stateWorkbasecancer painchronic painchronic painful conditionclinical centercytotoxicityinformation processinginjurednerve injuryneurotransmissionnon-opioid analgesicnovel therapeutic interventionosteoarthritis painpain processingpain reliefpain sensationpain sensitivitypain signalpre-clinicalpreservationpressurepreventprogramsreceptorsmall moleculesodium ionspinal cord injury painsubcutaneoustherapeutic proteintissue injurytranscriptome sequencingtranscriptomicstranslational studytransmission processwoundwound healing
项目摘要
Overview: This research program addresses basic molecular and physiological processes of nociceptive (pain-sensing) transmission in the peripheral and central nervous systems (CNS) and new ways to effectively control pain. The molecular research is performed using animal and in vitro cell-based models. We concentrate on primary afferent pain-sensing neurons located in dorsal root ganglion (DRG) that send nerve fibers to skin and deep tissues and make connections within dorsal spinal cord, which is the first CNS site of synaptic information processing for pain. The mechanisms of transduction of pain stimuli are investigated through models of pathophysiological damage or using reductionist preparations such as primary DRG cultures or heterologous expression systems of ion channels or receptors. Our goals are (a) to understand the molecular and cell biological mechanisms of acute and chronic pain at the initial steps in the pain pathway, (b) to investigate mechanisms underlying human chronic pain disorders, (c) to explore neuronal plasticity and altered gene expression in persistent pain states, and (d) to use this knowledge to devise new treatments for pain.
New Treatments for Pain: We address the new treatment goal through translational research coupled with human clinical trials to develop and introduce new molecular interventions for severe pain. Studies with the TRPV1 agonist resiniferatoxin (RTX) have resulted in a Phase I clinical trial for in patients with intractable pain from advanced cancer. RTX activates an influx of sodium and calcium ions and once bound to TRPV1, RTX props open the ion channel causing an intracellular calcium cytotoxicity. Depending on the route of administration RTX disables TRPV1 pain-sensing nerve endings or axons (i.e., the nerve fiber) or deletes the neuron entirely. RTX produces very effective pain control in pre-clinical models. The central route involves administration into the cerebrospinal fluid around the spinal cord (intrathecal). We have treated 16 patients with pain from advanced cancer. This study is complete unless another, higher, dose tier is investigated and being readied for publication. Earlier we published studies of RTX injections around or directly into sensory ganglia. These formed the basis of our protocol to localized chronic pain by periganglionic RTX injection. Peripheral routes of RTX administration also include injection into skin, joints, nerve bundles, or topically. Analgesia by these routes is long-lasting but reversible, since peripheral nerve endings regrow. Peripheral administration formed the basis of three reports on treating (a) experimental burn pain, (b) surgical incision pain, and (c) a third in which we successfully treated clinical osteoarthritis (OA) pain by intraarticular injection in client owned dogs. The post-operative incision and OA pain indications are being translated to humans. We are conducting the postoperative pain study in the Clinical Center in collaboration with the Thoracic and Oncologic Surgery Branch, NCI. The initial study will evaluate preemptive treatment with local RTX injected into wound sites. This protocol has passed scientific review and will proceed to the IRB and IND review stages. The protocol for treating trigeminal neuralgia by injection into the trigeminal ganglion also is in the process of review.
Early Translational Investigations: In collaboration, we have also examined the pharmacological activity of polyunsaturated ethanolamines and linoleic acid metabolites. In the previous cycle, we evaluated tissue biosynthetic pathways for new endogenous lipids and published our discovery of two previously unknown lipids related to nociception and itch in both animal and human studies. In this cycle we have applied a systems-based approach to characterize oxylipin precursor fatty acids, and the expression of genes coding for proteins involved in biosynthesis, transport, signaling and inactivation of pro- and anti-nociceptive oxylipins in rodent pain circuit tissues. We also measured basal and stimulated levels of predicted oxylipins, throughout the time course of an intraplantar carrageenan injection. These findings have been submitted for publication and advance our understanding of the molecular pathways linking oxylipins and their precursor fatty acids to nociceptive signaling pathways in rats. To extend the systems approach to humans we have established a new human protocol to obtain intraoperative tissue samples from surgical wound margins over time. This longitudinal study is currently underway. We have biopsied 5 subjects so far out of 12 and samples will be used to perform analyses of lipids and transcriptomic profiles over time.
During the previous cycle we published a report on a protein therapeutic agent that is a conjugate between Substance P and a bioengineered Pseudomonas exotoxin (SP-PE35). This agent is endocytosed by the substance P receptor expressing second order spinal cord dorsal horn neurons and the exotoxin moiety stops protein synthesis thereby killing the neuron and interrupting the pain pathway to the brain. This is a potent analgesic agent. We are currently working with our NCI collaborators to generate high-expressing constructs for SP-PE35 to obtain large amounts of the active pharmaceutical ingredient for further testing in cancer pain and spinal cord injury pain.
Basic Pain Mechanisms: Underlying the translational and clinical studies are investigations of molecular biology, neuronal function, behavior, and mechanisms of pain transduction and wound healing. We systematically investigate molecular alterations at the first three steps in the pain pathway beginning with injured peripheral tissue, the dorsal root ganglion and the dorsal (sensory) spinal cord in order to obtain a comprehensive quantitative foundational molecular understanding of nociceptive processes related to inflammation, surgical incision, and nerve injury. We use a method called RNA-Seq to sequence all of the mRNAs in a given tissue or cell population. Our work now integrates RNA-seq as a component in most of our investigations. We also investigate humans with genetic variations that affect pain sensitivity. At present we are investigating two groups of patients with copy number variants that decrease pain sensitivity. The results are both compelling and informative and define previously unidentified genetic substrates that can govern pain sensitivity. We also use RNA-seq to define genes involved in inherited peripheral neuropathies and other disorders. These investigations provide new quantitative assessments of neuronal and glial genes as well as immune process related to the nociceptive circuit. Through this basic research we aim to obtain a deeper understanding of mechanisms that trigger acute pain and sustain chronic pain and to identify molecular components to control pain.
概述:该研究项目致力于解决外周和中枢神经系统(CNS)中伤害性(疼痛感知)传播的基本分子和生理过程以及有效控制疼痛的新方法。分子研究是使用动物和体外细胞模型进行的。我们专注于位于背根神经节 (DRG) 的初级传入痛感神经元,这些神经元将神经纤维发送到皮肤和深层组织,并在背脊髓内建立连接,背脊髓是处理疼痛的突触信息的第一个中枢神经系统部位。通过病理生理学损伤模型或使用还原制剂(例如原代 DRG 培养物或离子通道或受体的异源表达系统)来研究疼痛刺激的转导机制。我们的目标是(a)在疼痛途径的最初步骤了解急性和慢性疼痛的分子和细胞生物学机制,(b)研究人类慢性疼痛疾病的机制,(c)探索神经元可塑性和改变的基因持续疼痛状态下的表达,以及(d)利用这些知识来设计新的疼痛治疗方法。
疼痛的新治疗方法:我们通过转化研究结合人体临床试验来实现新的治疗目标,以开发和引入针对严重疼痛的新分子干预措施。 TRPV1 激动剂树脂毒素 (RTX) 的研究已针对晚期癌症顽固性疼痛患者进行了 I 期临床试验。 RTX 激活钠离子和钙离子的流入,一旦与 TRPV1 结合,RTX 就会打开离子通道,导致细胞内钙细胞毒性。根据给药途径,RTX 会禁用 TRPV1 疼痛感应神经末梢或轴突(即神经纤维)或完全删除神经元。 RTX 在临床前模型中产生非常有效的疼痛控制。中枢途径涉及给药至脊髓周围的脑脊液(鞘内)。我们已经治疗了 16 名患有晚期癌症疼痛的患者。除非研究另一个更高的剂量层并准备发表,否则这项研究就完成了。早些时候,我们发表了在感觉神经节周围或直接注射 RTX 的研究。这些构成了我们通过神经节周围 RTX 注射治疗局部慢性疼痛的方案的基础。 RTX 给药的外周途径还包括注射到皮肤、关节、神经束或局部。这些途径的镇痛效果持久但可逆,因为周围神经末梢会再生。外周给药形成了三份关于治疗(a)实验性烧伤疼痛、(b)手术切口疼痛和(c)第三份报告的基础,其中我们通过关节内注射成功地治疗了客户养狗的临床骨关节炎(OA)疼痛。术后切口和骨关节炎疼痛适应症正在转化为人类。我们正在临床中心与 NCI 胸外科和肿瘤外科分部合作进行术后疼痛研究。初步研究将评估将局部 RTX 注射到伤口部位的先发性治疗。该方案已通过科学审查,将进入IRB和IND审查阶段。通过三叉神经节注射治疗三叉神经痛的方案也正在审查过程中。
早期转化研究:在合作中,我们还检查了多不饱和乙醇胺和亚油酸代谢物的药理活性。在上一个周期中,我们评估了新的内源性脂质的组织生物合成途径,并发表了我们在动物和人类研究中发现的两种先前未知的与伤害感受和瘙痒相关的脂质。 在这个周期中,我们应用基于系统的方法来表征氧脂素前体脂肪酸,以及编码参与啮齿动物疼痛回路组织中亲伤害性和抗伤害性氧脂素的生物合成、运输、信号传导和失活的蛋白质的基因表达。 我们还测量了在足底内注射角叉菜胶的整个时间过程中预测的氧脂质的基础水平和刺激水平。这些发现已提交发表,并增进了我们对连接氧脂素及其前体脂肪酸与大鼠伤害性信号传导途径的分子途径的理解。 为了将系统方法扩展到人类,我们建立了一个新的人类协议,以随着时间的推移从手术伤口边缘获取术中组织样本。 这项纵向研究目前正在进行中。到目前为止,我们已经对 12 名受试者中的 5 名进行了活检,样本将用于随着时间的推移进行脂质和转录组谱分析。
在上一个周期中,我们发表了一份关于蛋白质治疗剂的报告,该蛋白质治疗剂是 P 物质和生物工程假单胞菌外毒素 (SP-PE35) 的结合物。该药物被表达二级脊髓背角神经元的 P 物质受体内吞,外毒素部分停止蛋白质合成,从而杀死神经元并中断通往大脑的疼痛通路。这是一种有效的镇痛剂。我们目前正在与 NCI 合作者合作,生成 SP-PE35 的高表达构建体,以获得大量活性药物成分,用于进一步测试癌症疼痛和脊髓损伤疼痛。
基本疼痛机制:转化和临床研究的基础是分子生物学、神经元功能、行为以及疼痛传导和伤口愈合机制的研究。我们系统地研究疼痛通路前三个步骤的分子改变,从受伤的周围组织、背根神经节和背侧(感觉)脊髓开始,以获得与炎症、手术相关的伤害感受过程的全面定量基础分子理解。切口、神经损伤。我们使用一种称为 RNA-Seq 的方法对给定组织或细胞群中的所有 mRNA 进行测序。我们现在的工作将 RNA-seq 作为我们大多数研究的一个组成部分。我们还研究了影响疼痛敏感性的基因变异的人类。目前,我们正在研究两组具有降低疼痛敏感性的拷贝数变异的患者。结果既令人信服又信息丰富,并定义了以前未识别的可以控制疼痛敏感性的遗传底物。我们还使用 RNA-seq 来定义与遗传性周围神经病和其他疾病有关的基因。这些研究为神经元和神经胶质基因以及与伤害感受回路相关的免疫过程提供了新的定量评估。通过这项基础研究,我们的目标是更深入地了解引发急性疼痛和维持慢性疼痛的机制,并确定控制疼痛的分子成分。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Andrew Mannes其他文献
Andrew Mannes的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Andrew Mannes', 18)}}的其他基金
Integrative And Molecular Studies Of Pain And Pain Control
疼痛和疼痛控制的综合和分子研究
- 批准号:
10691772 - 财政年份:
- 资助金额:
-- - 项目类别:
Integrative And Molecular Studies Of Pain And Pain Control
疼痛和疼痛控制的综合和分子研究
- 批准号:
9555579 - 财政年份:
- 资助金额:
-- - 项目类别:
相似国自然基金
急性牙髓炎疼痛昼夜变化的中枢调控新机制:节律基因Per1/HIF-1α轴调控铁代谢介导小胶质细胞差异性极化
- 批准号:82370986
- 批准年份:2023
- 资助金额:48 万元
- 项目类别:面上项目
电针调控Nrf2表达抑制巨噬细胞铁死亡进程缓解急性痛风性关节炎疼痛的机制研究
- 批准号:82305369
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
前扣带回沉默突触激活介导急性疼痛慢性化的环路和细胞机制
- 批准号:
- 批准年份:2022
- 资助金额:52 万元
- 项目类别:面上项目
围术期睡眠剥夺激活外周感觉神经元芳香烃受体致术后急性疼痛慢性化
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
从急性到慢性下腰腿痛:默认网络对疼痛的编码作用及其机制的MRI研究
- 批准号:82160331
- 批准年份:2021
- 资助金额:34 万元
- 项目类别:地区科学基金项目
相似海外基金
Elucidating causal mechanisms of ethanol-induced analgesia in BXD recombinant inbred mouse lines
阐明 BXD 重组近交系小鼠乙醇诱导镇痛的因果机制
- 批准号:
10825737 - 财政年份:2023
- 资助金额:
-- - 项目类别:
A Novel Assay to Improve Translation in Analgesic Drug Development
改善镇痛药物开发转化的新方法
- 批准号:
10726834 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Identification of gene variants mediating the behavioral and physiological response to THC
鉴定介导 THC 行为和生理反应的基因变异
- 批准号:
10660808 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Pterygopalatine Fossa (PPF) Block as an Opioid Sparing Treatment for AcuteHeadache in Aneurysmal Subarachnold Hemorrhage
翼腭窝 (PPF) 阻滞作为阿片类药物节省治疗动脉瘤性蛛网膜下腔出血的急性头痛
- 批准号:
10584712 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Development of a regional anesthesia guidance system to increase patient access to opioid-sparing analgesia for hip fracture pain
开发区域麻醉引导系统,以增加患者获得髋部骨折疼痛的阿片类药物保留镇痛的机会
- 批准号:
10759550 - 财政年份:2023
- 资助金额:
-- - 项目类别: