Integrative And Molecular Studies Of Pain And Pain Control
疼痛和疼痛控制的综合和分子研究
基本信息
- 批准号:10691772
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:
- 资助国家:美国
- 起止时间:至
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Summary
Overview: This research program addresses basic molecular and physiological processes of nociceptive (pain-sensing) transmission in the peripheral and central nervous systems (CNS) and new ways to effectively control pain. The molecular research is performed using animal and in vitro cell-based models. We concentrate on primary afferent pain-sensing neurons located in dorsal root ganglion (DRG) that send axonal projections to skin and deep tissues and make connections within dorsal spinal cord, which is the first CNS site of synaptic information processing for pain. The mechanisms of transduction of pain stimuli are investigated through models of pathophysiological damage or using reductionist preparations such as primary DRG cultures or heterologous expression systems of ion channels or receptors. Our goals are (a) to understand the molecular and cell biological mechanisms of acute and chronic pain at the initial steps in the pain pathway, (b) to investigate mechanisms underlying human chronic pain disorders, (c) to explore neuronal plasticity and altered gene expression in persistent pain states, and (d) to use this knowledge to devise new treatments for pain.
New Treatments for Pain: We address the new treatment goal through translational research coupled with human clinical trials to develop and introduce new molecular interventions for severe pain. Studies with the TRPV1 agonist resiniferatoxin (RTX) have resulted in a Phase I clinical trial for in patients with intractable pain from advanced cancer. RTX activates an influx of sodium and calcium ions and once bound to TRPV1, RTX props open the ion channel causing an intracellular calcium cytotoxicity. Depending on the route of administration RTX disables TRPV1 pain-sensing nerve endings or axons (i.e., the nerve fiber) or deletes the neuron entirely. RTX produces very effective pain control in pre-clinical models. The central route involves administration into the cerebrospinal fluid around the spinal cord (intrathecal). To date, we have treated 19 patients with pain from advanced cancer. This Phase I study is provisionally complete although we plan to examine a higher dose tier. It and being readied for publication. Earlier we published studies of RTX injections around or directly into sensory ganglia which formed the basis of our protocol to treat localized chronic pain by periganglionic RTX injection. Other peripheral routes of RTX administration include injection into skin, joints, nerve bundles, or topically. Preclinical studies show that analgesia by these routes is long-lasting but reversible, since the peripheral nerve endings regrow. Human protocols for post-operative incision and neuroma pain indications were generated in collaboration with the Thoracic and Oncologic Surgery Branch, NCI and local podiatrists, respectively. The initial post-operative study is designed to evaluate preemptive treatment with RTX injected subcutaneously prior to incision. This protocol has passed scientific review and was evaluated by the FDA which asked for certain additional experiments which are pending. The protocol for treating Mortons neuroma will be by perineural injection just proximal to the neuroma. This protocol also has passed scientific review The IND has been prepared and will soon be submitted to the FDA.
Early Translational Investigations: In this cycle we extended our systems approach for integrated RNA-Seq and lipidomics to humans through a our human intraoperative tissue biopsy protocol. We obtained samples from surgical wound margins over time. This longitudinal tissue procurement was completed, and we are presently analyzing the samples transcriptomically, anatomically, and lipidomically.
During this cycle we have made a strong effort to incorporate direct in human studies of nociceptive molecular biology. This was prompted by our repeated observations of species differences in gene expression in dorsal root ganglion (DRG) and spinal cord. Most of the skin, nerve, DRG and spinal cord tissues are recovered from organ donors or obtained at autopsy of patients in NCI Laboratory of Pathology. These tissues are being analyzed intensively by whole tissue sequencing, single nucleus sequencing, in situ hybridization and immunofluorescence staining of proteins. In collaboration with the Dr. Ashok Kulkarnis lab, we have examined DRG from patients with painful diabetic peripheral neuropathy (DPN). The first paper describing these results was published in this cycle and a second one is about to be submitted. We observe a loss of a select subpopulation of nociceptors suggesting a dynamic interplay occurs between initial hyperexcitability and subsequent neurotoxicity. We emphasize the importance of enhanced focus on human studies in a recent publication in the Journal of Pain (PMID: 35504570).
Basic Pain Mechanisms: Underlying the translational and clinical studies are investigations of neuronal function, behavior, and molecular biological mechanisms of pain transduction and wound healing. We systematically investigate molecular alterations at the first three steps in the pain pathway beginning with injured peripheral tissue, the dorsal root ganglion and the dorsal (sensory) spinal cord to obtain a comprehensive, quantitative foundational molecular understanding of nociceptive processes related to inflammation, surgical incision, and nerve injury. One of the main methods we used is called RNA-Seq with which we can sequence all of the mRNAs in a given tissue or cell population. Our work now integrates RNA-Seq as a component in most of our investigations. Another main method is multiplex fluorescence in situ and immunofluorescence anatomical studies of tissues in the nociceptive circuit. Using these techniques we now investigate humans with genetic variations that affect pain sensitivity. At present we are investigating a group of rare individuals with a copy number variant involving a specific gene locus. Individuals with three copies of this region exhibit profound decreases pain sensitivity. Using RNA-Seq we identified one gene in the locus of 25 that is an excellent candidate for mediating the analgesic action when overexpressed. The results are both compelling and informative and define a previously unidentified genetic mechanism for governing pain sensitivity. The RNA-Seq investigations provide new quantitative assessments of neuronal and glial genes as well as immune process related to nociceptive circuit function. Through this basic research we are obtaining a deeper understanding of mechanisms that trigger acute pain and sustain chronic pain and we are identifying molecular components to control pain.
概括
概述:该研究计划介绍了周围和中枢神经系统(CNS)中伤害感受(疼痛)传播的基本分子和生理过程,以及有效控制疼痛的新方法。分子研究是使用动物和基于体外细胞的模型进行的。我们集中于位于背根神经节(DRG)的一级传入疼痛神经元,该神经元将轴突投射发送到皮肤和深层组织,并在背脊髓内建立连接,这是第一个用于疼痛的突触信息处理的CNS部位。通过病理生理损害的模型或使用还原病的制剂,例如原代DRG培养物或离子通道或受体异源表达系统来研究疼痛刺激转导的机制。我们的目标是(a)了解疼痛途径的初始步骤下急性和慢性疼痛的分子和细胞生物学机制,(b)研究人类慢性疼痛障碍的机制,(c)探索神经元可塑性和探索持久性疼痛状态中基因表达的改变,以及(d)使用此知识来使用这种疼痛来设计新的治疗方法。
疼痛的新治疗方法:我们通过翻译研究以及人类的临床试验来解决新的治疗目标,以开发和引入新的分子干预措施,以实现剧烈疼痛。对TRPV1激动剂树脂毒素(RTX)的研究已导致了I期临床试验,用于患有晚期癌症患者的患者。 RTX激活钠和钙离子的涌入,一旦与TRPV1结合,RTX Props打开了离子通道,导致细胞内钙细胞毒性。根据给药的途径,RTX禁用TRPV1疼痛神经末端或轴突(即神经纤维)或完全删除神经元。 RTX在临床前模型中产生非常有效的疼痛控制。中心途径涉及在脊髓周围的脑脊液(鞘内)施用。迄今为止,我们已经治疗了19例晚期癌症患者。尽管我们计划检查较高的剂量层,但该阶段I研究是临时完成的。它并准备出版。早些时候,我们发表了对周围或直接进入感觉神经节的RTX注射的研究,这构成了我们的方案的基础,该方案是通过细胞神经节RTX注射来治疗局部慢性疼痛的基础。 RTX给药的其他外围路线包括注入皮肤,关节,神经束或局部。临床前研究表明,由于周围神经末端再生,这些路线的镇痛是长期的,但可逆。分别与胸腔和肿瘤手术分支,NCI和局部足病医生合作生成了用于术后切口和神经瘤疼痛指示的人体方案。最初的术后研究旨在在切口前用皮下注射的RTX评估先发制人的治疗。该协议已经通过了科学审查,并由FDA进行了评估,该协议要求进行某些待定的其他实验。治疗Mortons神经瘤的方案将是通过神经瘤近端的周期注射。 该协议还通过了科学审查,该协议已经准备好了,并将很快提交给FDA。
早期翻译研究:在这个周期中,我们通过人类的术中组织活检方案将整合RNA-SEQ和脂质组学的整合RNA-SEQ和脂质组学的方法扩展到了人类。随着时间的流逝,我们从手术伤口边缘获得了样品。这种纵向组织的采购完成了,我们目前正在从解剖学和脂肪分析上分析样品。
在这个周期中,我们竭尽全力将直接纳入伤害性分子生物学的研究中。这是由于我们反复观察到背根神经节(DRG)和脊髓中物种差异的重复观察。 大多数皮肤,神经,DRG和脊髓组织都是从器官供体中回收的,或在NCI病理学实验室的患者尸检中获得的。 通过整个组织测序,单核测序,原位杂交和蛋白质的免疫荧光染色对这些组织进行深入分析。与Ashok Kulkarnis博士合作,我们检查了疼痛糖尿病周围神经病(DPN)患者的DRG。 描述这些结果的第一篇论文在此周期中发表,第二篇论文即将提交。我们观察到伤害感受器的某些亚群的丧失,这表明在初始过度兴奋性和随后的神经毒性之间发生动态相互作用。在《痛苦杂志》(PMID:35504570)中,我们强调了增强对人类研究的重点的重要性。
基本疼痛机制:基础转化和临床研究是对疼痛转导和伤口愈合的神经元功能,行为和分子生物学机制的研究。我们系统地研究了疼痛途径的前三个步骤的分子改变,从受伤的周围组织,背根神经节和背侧(感觉)脊髓开始,以获得与炎症,手术切口和静脉损伤有关的全面的,定量的基础分子理解。我们使用的主要方法之一称为RNA-Seq,我们可以通过它来对给定的组织或细胞群中的所有mRNA进行测序。现在,我们的工作将RNA-Seq作为我们大多数研究的组成部分集成。另一种主要方法是多重荧光原位和伤害性回路组织的免疫荧光解剖学研究。 使用这些技术,我们现在研究人类具有影响疼痛敏感性的遗传变异。目前,我们正在研究一组涉及特定基因座的拷贝数变体的稀有个体。具有该区域三份的个体表现出深远的疼痛敏感性。我们使用RNA-Seq确定了25个基因座中的一个基因,它是介导镇痛作用过表达时的出色候选者。结果既具有吸引力又有信息,并定义了以前未鉴定的遗传机制来控制疼痛敏感性。 RNA-seq研究提供了对神经元和神经胶质基因以及与伤害性电路功能有关的免疫过程的新定量评估。通过这项基础研究,我们对引发急性疼痛并维持慢性疼痛的机制有了更深入的了解,我们正在识别分子成分以控制疼痛。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

暂无数据
数据更新时间:2024-06-01
Andrew Mannes的其他基金
Integrative And Molecular Studies Of Pain And Pain Control
疼痛和疼痛控制的综合和分子研究
- 批准号:1026264210262642
- 财政年份:
- 资助金额:----
- 项目类别:
Integrative And Molecular Studies Of Pain And Pain Control
疼痛和疼痛控制的综合和分子研究
- 批准号:95555799555579
- 财政年份:
- 资助金额:----
- 项目类别:
相似国自然基金
电针调控Nrf2表达抑制巨噬细胞铁死亡进程缓解急性痛风性关节炎疼痛的机制研究
- 批准号:82305369
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
急性牙髓炎疼痛昼夜变化的中枢调控新机制:节律基因Per1/HIF-1α轴调控铁代谢介导小胶质细胞差异性极化
- 批准号:82370986
- 批准年份:2023
- 资助金额:48 万元
- 项目类别:面上项目
围术期睡眠剥夺激活外周感觉神经元芳香烃受体致术后急性疼痛慢性化
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
前扣带回沉默突触激活介导急性疼痛慢性化的环路和细胞机制
- 批准号:
- 批准年份:2022
- 资助金额:52 万元
- 项目类别:面上项目
前扣带回沉默突触激活介导急性疼痛慢性化的环路和细胞机制
- 批准号:82271263
- 批准年份:2022
- 资助金额:52.00 万元
- 项目类别:面上项目
相似海外基金
Identification of gene variants mediating the behavioral and physiological response to THC
鉴定介导 THC 行为和生理反应的基因变异
- 批准号:1066080810660808
- 财政年份:2023
- 资助金额:----
- 项目类别:
A Novel Assay to Improve Translation in Analgesic Drug Development
改善镇痛药物开发转化的新方法
- 批准号:1072683410726834
- 财政年份:2023
- 资助金额:----
- 项目类别:
Pterygopalatine Fossa (PPF) Block as an Opioid Sparing Treatment for AcuteHeadache in Aneurysmal Subarachnold Hemorrhage
翼腭窝 (PPF) 阻滞作为阿片类药物节省治疗动脉瘤性蛛网膜下腔出血的急性头痛
- 批准号:1058471210584712
- 财政年份:2023
- 资助金额:----
- 项目类别:
Elucidating causal mechanisms of ethanol-induced analgesia in BXD recombinant inbred mouse lines
阐明 BXD 重组近交系小鼠乙醇诱导镇痛的因果机制
- 批准号:1082573710825737
- 财政年份:2023
- 资助金额:----
- 项目类别:
Development of a regional anesthesia guidance system to increase patient access to opioid-sparing analgesia for hip fracture pain
开发区域麻醉引导系统,以增加患者获得髋部骨折疼痛的阿片类药物保留镇痛的机会
- 批准号:1075955010759550
- 财政年份:2023
- 资助金额:----
- 项目类别: