Integrative And Molecular Studies Of Pain And Pain Control
疼痛和疼痛控制的综合和分子研究
基本信息
- 批准号:9555579
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:
- 资助国家:美国
- 起止时间:至
- 项目状态:未结题
- 来源:
- 关键词:Absence of pain sensationAction PotentialsAcute PainAddressAdvanced Malignant NeoplasmAffectAfferent NeuronsAgonistAnalgesicsAnimalsAxonBasic ScienceBehavioral MechanismsBindingBiologicalBiomedical EngineeringBladderBrainCalcitonin Gene-Related PeptideCalciumCanis familiarisCapsaicinCellsCerebrospinal FluidChemicalsChromosomes, Human, Pair 11Chromosomes, Human, Pair 7ClientClinicalClinical ProtocolsClinical ResearchClinical TrialsCollaborationsComplexCopy Number PolymorphismCoupledDataDegenerative polyarthritisDevelopmentDiseaseDorsalEsthesiaEthanolaminesEuphorbiaExcisionExotoxinsFoundationsGene ExpressionGenesGeneticGenetic VariationGoalsHeadacheHumanHuman GeneticsIn VitroInflammationInheritedInjection of therapeutic agentInterruptionInterventionIntestinesIntra-Articular InjectionsIntractable PainInvestigationInvestigational New Drug ApplicationIon ChannelIonsJointsKnee jointKnowledgeLatexLeadLimb structureLinoleic AcidsLipidsLocalized Malignant NeoplasmMalignant NeoplasmsMechanicsMediatingMessenger RNAMethodsModelingMolecularMolecular BiologyMolecular TargetMotorMusNerveNerve EndingsNerve FibersNeuraxisNeurobiologyNeuronal PlasticityNeuronsNeuropeptidesNociceptionNociceptive StimulusOperative Surgical ProceduresPainPain DisorderPain managementPathway interactionsPatientsPatternPeripheralPeripheral Nervous System DiseasesPersistent painPharmaceutical ChemistryPharmaceutical PreparationsPharmacologyPhase I Clinical TrialsPhysical activityPhysiological ProcessesPopulationPre-Clinical ModelPreparationProcessProprioceptionProtein BiosynthesisProtocols documentationPruritusPseudomonasPublishingRattusReportingResearchResiniferatoxinRoleRouteSensorySensory GangliaSerious Adverse EventSignal TransductionSiteSkinSodium ChannelSpinal CordSpinal GangliaSpinal cord posterior hornStimulusSubcutaneous InjectionsSubstance PSubstance P ReceptorSurgical incisionsSymptomsSynapsesSystemTRPV1 geneTestingTherapeutic AgentsTherapeutic UsesTimeTissuesTouch sensationTranslational ResearchVanilloidVeterinary MedicineVeterinary SchoolsWeightWeight-Bearing statebasebehavior testcancer painchronic painclinically relevantcombinatorialcytotoxicitydesignendovanilloidexperimental studyhealinghigh throughput screeningin vitro Assayin vivoinformation processinginjuredkillingsnerve injurynovelnovel strategiesperipheral painpositive allosteric modulatorpressureprogramsreceptorrelating to nervous systemspinal cord injury paintherapeutic proteintranscriptometranscriptome sequencingtranscriptomicstranslation to humanstranslational studytransmission processwound
项目摘要
Overview: This research program addresses basic molecular and physiological processes of nociceptive (pain-sensing) transmission in the peripheral and central nervous systems (CNS) and new ways to effectively control pain. The molecular research is performed using animal and in vitro cell-based models. We concentrate on primary afferent pain-sensing neurons located in dorsal root ganglion (DRG) that send nerve fibers to skin and deep tissues and make connections within dorsal spinal cord, which is the first CNS site of synaptic information processing for pain. The mechanisms of transduction of physical pain stimuli are investigated through models of pathophysiological damage or using reductionist preparations such as primary DRG cultures or heterologous expression systems of ion channels or receptors. Our goals are (a) to understand the molecular and cell biological mechanisms of acute and chronic pain at the initial steps in the pain pathway, (b) to investigate mechanisms underlying human chronic pain disorders, (c) to explore neuronal plasticity and altered gene expression in persistent pain states, and (d) to use this knowledge to devise new treatments for pain.
New Treatments for Pain: We address the new treatment goal through translational research coupled with human clinical trials to develop and introduce new molecular interventions for severe pain. Studies with the TRPV1 agonist resiniferatoxin (RTX) have resulted in a Phase I clinical trial for in patients with intractable pain from advanced cancer. RTX activates TRPV1, which is an inflammation-, heat-, and capsaicin-sensitive calcium/sodium ion channel that normally converts painful heat or acidic pH into nerve action potentials by opening the pore of the ion channel. The influx of ions depolarizes pain-sensing nerve endings and sends electrical signals to the spinal cord (which in turn sends the signals to the brain where we perceive pain). After binding to TRPV1, RTX props open the ion channel, causing intracellular calcium cytotoxicity. Depending on the route of administration this disables or deletes TRPV1 pain-sensing neurons, their nerve endings or axons (i.e., the nerve fiber). RTX produces very effective pain control in pre-clinical models. The central route involves administration into the cerebrospinal fluid around the spinal cord (intrathecal). After approval of the clinical protocol by our IRB and the Investigational New Drug application by the FDA, we have treated 12 patients with pain from advanced cancer. This study is nearly complete. We also published a study of injections around or directly into sensory ganglia, and, based on this approach, we will commence a new protocol for more localized cancer pain problems. Peripheral routes of RTX administration include direct injection into skin, joints, nerve bundles, or topically. Analgesia by these routes is long-lasting but temporary since nerve endings and axons regrow. Peripheral administration formed the basis of three reports, one in which we successfully treated experimental burn pain, another in which we successfully used RTX as a preemptive analgesic for surgical incision pain and a third report (in progress) in which we successfully treated clinical osteoarthritis (OA) pain by intraarticular injection in client owned dogs. The canine results demonstrated strong efficacy and a long duration of action (4 to >12 months) upon RTX injection into knee joints and strongly reinforce the objective of therapeutic use of vanilloid agonists for pain control and the translation to human patients.
Early Translational Investigations: In collaboration, we have also examined the pharmacological activity of polyunsaturated ethanolamines and linoleic acid metabolites. These putative "endovanilloids." could function as endogenous orthosteric agonists at TRPV1. In this cycle, we evaluated tissue biosynthetic pathways for new endogenous lipids. We published our discovery of two previously unknown lipids. One sensitized nerves to nociceptive stimuli, the other caused itch and, in humans, were associated with headache and itch conditions, respectively. In ongoing allied studies, we examined small chemicals that act as positive allosteric modulators (PAMs) of TRPV1 activation. By high throughput screening we discovered several new chemical compounds that enhance the activation of TRPV1 upon orthosteric agonist (capsaicin) binding or by elevated H+ ions. Medicinal chemistry efforts yielded DPM-32 and DPM-74, which are active in in vivo or in vitro assays. These experiments reveal a new approach to pain modulation and pain control and support the idea that TRPV1 agonist activity, induced in several different ways, has the potential to yield novel, non-narcotic, non-addictive, selective, long-lasting analgesic agents that may be effective in acute, persistent, or chronic pain disorders. During this cycle we also published a report on a protein therapeutic agent that is a conjugate between Substance P and a bioengineered Pseudomonas exotoxin. This agent is endocytosed by the substance P receptor expressing second order spinal cord dorsal horn neurons and the exotoxin moiety stops protein synthesis thereby killing the neuron and interrupting the pain pathway to the brain. This is a potent analgesic agent. We intend to test it in certain pain indications, including cancer pain and spinal cord injury pain. Molecular manipulations aimed at generating high expressing constructs are in progress.
Basic Pain Mechanisms: Underlying the translational and clinical studies are investigations of molecular biology, neuronal function, behavior, and mechanisms of pain transduction. We are systematically investigating molecular alterations at the first three steps in the pain pathway beginning with injured peripheral tissue, the dorsal root ganglion and the dorsal (sensory) spinal cord in order to obtain a foundational, comprehensive, quantitative molecular understanding of nociceptive processes related to inflammation and nerve injury. Our studies reveal a complex, dynamic modulation of gene expression at all three steps. We are using a method called RNA-seq to sequence all of the mRNAs in a given tissue or cell population and have identified prominent roles for new, key molecules with distinct combinatorial patterns of expression among the three tissues. We also combine RNA-seq with genetically or pharmacologically manipulated mice and rats and in humans with copy number variants that affect pain sensitivity, one being a hemideletion on chromosome 11 and the other a duplication on chromosome 7. The results are both compelling and informative, and define previously unidentified genetic components governing pain sensitivity. We also have used RNA-seq to define genes involved in inherited peripheral neuropathies and pain channelopathies. These investigations provide a much better quantitative assessment of genes expressed in tissues and neurons of the nociceptive circuit in basal conditions, after pathophysiological manipulations, and in human genetic variations that affect pain sensitivity. Through this basic research we aim to obtain a deeper understanding of mechanisms that trigger acute pain and sustain chronic pain and to identify molecular components to control pain.
概述:该研究计划介绍了周围和中枢神经系统(CNS)中伤害感受(疼痛)传播的基本分子和生理过程,以及有效控制疼痛的新方法。分子研究是使用动物和基于体外细胞的模型进行的。我们专注于位于背根神经节(DRG)中的初级传入疼痛神经元,这些神经元将神经纤维发送到皮肤和深层组织,并在背脊髓内建立连接,这是第一个用于疼痛的突触信息处理的CNS部位。通过病理生理损害的模型或使用还原病的制剂,例如原代DRG培养物或离子通道或受体异源表达系统,研究了身体疼痛刺激的转导机制。我们的目标是(a)了解疼痛途径的初始步骤下急性和慢性疼痛的分子和细胞生物学机制,(b)研究人类慢性疼痛障碍的机制,(c)探索神经元可塑性和探索持久性疼痛状态中基因表达的改变,以及(d)使用此知识来使用这种疼痛来设计新的治疗方法。
疼痛的新治疗方法:我们通过翻译研究以及人类的临床试验来解决新的治疗目标,以开发和引入新的分子干预措施,以实现剧烈疼痛。对TRPV1激动剂树脂毒素(RTX)的研究已导致了I期临床试验,用于患有晚期癌症患者的患者。 RTX激活TRPV1,这是一种炎症,热和辣椒素敏感的钙/钠离子通道,通常通过打开离子通道的孔,通常将疼痛的热或酸性pH转化为神经作用电位。离子的涌入使疼痛感应神经末端去极化,并将电信号发送到脊髓(又将信号发送到我们感知疼痛的大脑)。与TRPV1结合后,RTX Props打开了离子通道,引起细胞内钙的细胞毒性。根据给药途径,该禁用或删除TRPV1疼痛神经元,其神经末端或轴突(即神经纤维)。 RTX在临床前模型中产生非常有效的疼痛控制。中心途径涉及在脊髓周围的脑脊液(鞘内)施用。在我们的IRB批准了临床方案和FDA的研究新药应用后,我们已经治疗了12例患有晚期癌症的疼痛患者。这项研究几乎完成了。我们还发表了一项关于周围或直接进入感觉神经节的注射研究的研究,基于这种方法,我们将开始制定新的方案,以解决更局部的癌症疼痛问题。 RTX给药的外围路线包括直接注入皮肤,关节,神经束或局部注射。这些路线的镇痛是持久的,但由于神经末端和轴突再生。外围给药构成了三个报告的基础,其中一份是我们成功治疗了实验性烧伤疼痛,在其中,我们成功地将RTX用作手术切口疼痛的先发性镇痛药,以及在客户室内犬内通过诊所内注射成功治疗的临床骨关节炎(OA)疼痛的第三份报告(正在进行中)。犬类结果表明,在RTX注射到膝关节中后,犬的功效很强,作用持续时间很长(4至12个月),并强烈加强了治疗性使用香草素激动剂来控制疼痛和对人类患者的翻译的目标。
早期翻译研究:在合作中,我们还研究了多不饱和乙醇胺和亚油酸代谢产物的药理活性。 这些推定的“硅藻土”。可以在TRPV1处充当内源性正常激动剂。在此周期中,我们评估了新内源性脂质的组织生物合成途径。我们发布了两种以前未知的脂质的发现。一种对伤害感受刺激的神经,另一种是引起瘙痒,在人类中,神经分别与头痛和瘙痒状况有关。在正在进行的盟军研究中,我们检查了TRPV1激活的阳性变构调节剂(PAM)的小化学物质。通过高吞吐量筛选,我们发现了几种新的化学化合物,可增强在正构激动剂(辣椒素)结合或H+离子升高时TRPV1的激活。药物化学工作产生了活性在体内或体外测定中的DPM-32和DPM-74。这些实验揭示了一种新的方法调节疼痛调节和控制疼痛的方法,并支持以几种不同方式诱导的TRPV1激动剂活性,有可能产生新颖的,非麻醉,非成瘾性,选择性,选择性,持久的止痛药,这些药物可能在急性,持续性,持续性,持久性或慢性疼痛疾病中有效。在此周期中,我们还发表了一份关于蛋白质治疗剂的报告,该蛋白治疗剂是P和生物工程性假单胞菌Exotoxin之间的共轭。 该药物是由表达二阶脊髓背角神经元的物质P受体内吞和,Exotoxin部分停止蛋白质合成,从而杀死神经元并中断大脑的疼痛途径。这是一种有效的镇痛药。我们打算在某些疼痛指示下对其进行测试,包括癌症疼痛和脊髓损伤疼痛。旨在产生高表达构建体的分子操作正在进行中。
基本疼痛机制:基础转化和临床研究是对分子生物学,神经元功能,行为和疼痛转导机制的研究。我们正在系统地研究疼痛途径的前三个步骤的分子改变,从受伤的周围组织,背根神经节和背侧(感觉)脊髓开始,以获得对与炎症和Nerve损伤相关的伤害性过程的基础,全面的,定量的分子理解。我们的研究揭示了在所有三个步骤上对基因表达的复杂,动态调节。我们正在使用一种称为RNA-Seq的方法来对给定的组织或细胞种群中的所有mRNA进行测序,并确定了三个组织中具有不同组合表达的新的关键分子的突出作用。我们还将RNA-SEQ与遗传学或药理操纵的小鼠和大鼠以及具有影响疼痛敏感性的拷贝数变异的人类结合在一起,一个是对11号染色体的止痛作用,另一个是对7号染色体的重复。结果既引人注目又有信息,既具有意识和信息,又定义了先前独立的遗传组成部分,并且定义了均匀的遗传组成部分。我们还使用RNA-SEQ来定义涉及遗传周围神经病和止痛通道病的基因。这些研究提供了对在病理生理操纵后的基础情况下的组织和神经元中表达的基因以及影响疼痛敏感性的人类遗传变异的基因的更好的定量评估。通过这项基础研究,我们旨在更深入地了解引发急性疼痛并维持慢性疼痛并识别分子成分以控制疼痛的机制。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Andrew Mannes其他文献
Andrew Mannes的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Andrew Mannes', 18)}}的其他基金
Integrative And Molecular Studies Of Pain And Pain Control
疼痛和疼痛控制的综合和分子研究
- 批准号:
10691772 - 财政年份:
- 资助金额:
-- - 项目类别:
Integrative And Molecular Studies Of Pain And Pain Control
疼痛和疼痛控制的综合和分子研究
- 批准号:
10262642 - 财政年份:
- 资助金额:
-- - 项目类别:
相似国自然基金
神经系统中动作电位双稳传导研究
- 批准号:12375033
- 批准年份:2023
- 资助金额:52 万元
- 项目类别:面上项目
与痛觉相关的动作电位传导失败的动力学与调控机制
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
与痛觉相关的动作电位传导失败的动力学与调控机制
- 批准号:12202147
- 批准年份:2022
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
神经元离子通道-动作电位-量子化分泌关系研究
- 批准号:31930061
- 批准年份:2019
- 资助金额:303 万元
- 项目类别:重点项目
仿生味觉自适应柔性纳米电极阵列构建研究
- 批准号:61901469
- 批准年份:2019
- 资助金额:24.5 万元
- 项目类别:青年科学基金项目
相似海外基金
High content analgesic screening from human nociceptors
从人类伤害感受器中筛选高含量镇痛剂
- 批准号:
10578042 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Role of Primary Sensory Neuron CaMKII Signaling in Regulation of Pain
初级感觉神经元 CaMKII 信号传导在疼痛调节中的作用
- 批准号:
10656886 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Targeting visceral pain through intestinal neuropod cell GUCY2C signaling
通过肠道神经足细胞 GUCY2C 信号传导治疗内脏疼痛
- 批准号:
10837293 - 财政年份:2023
- 资助金额:
-- - 项目类别:
CaV2.2 splice variants in the hippocampus: function and pharmacology
海马 CaV2.2 剪接变异体:功能和药理学
- 批准号:
10363116 - 财政年份:2022
- 资助金额:
-- - 项目类别:
CaV2.2 splice variants in the hippocampus: function and pharmacology
海马 CaV2.2 剪接变异体:功能和药理学
- 批准号:
10652276 - 财政年份:2022
- 资助金额:
-- - 项目类别: