Robust AI to develop risk models in retinopathy of prematurity using deep learning
强大的人工智能利用深度学习开发早产儿视网膜病变的风险模型
基本信息
- 批准号:10254429
- 负责人:
- 金额:$ 19.69万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-09-30 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:AffectArchitectureBlindnessBlood VesselsChildhoodClinicalCollectionCommunitiesDataData SetData Storage and RetrievalDatabasesDiseaseDropsEcosystemEye diseasesFutureGestational AgeGrantHeterogeneityImageInfantInstitutionIntellectual PropertyLabelLeadLearningLeftLogistic RegressionsLow Birth Weight InfantMachine LearningMeasuresMethodsModelingPatient imagingPatientsPerformancePremature BirthPremature InfantProtocols documentationPublishingRare DiseasesRegulationResearchResearch PersonnelRetinaRetinal DetachmentRetinopathy of PrematurityRiskRisk FactorsSensitivity and SpecificitySeveritiesSeverity of illnessSiteTechniquesTestingTimeTrainingUpdateVascular DiseasesVascular ProliferationWeightWorkbaseclinical decision-makingclinical riskcohortconvolutional neural networkcostdata de-identificationdata repositorydata sharingdeep learningdeep learning algorithmexperienceimprovedindividual patientlarge datasetslearning strategymultiple data sourcesneovascularopen source toolpatient populationpatient privacypatient subsetspredictive modelingrepositoryrisk predictionrisk prediction modelscreening guidelinessecondary analysissupplemental oxygen
项目摘要
ROP is a retinal neovascular disease affecting preterm infants, and is a leading cause of childhood blindness
worldwide. Known clinical risk factors include preterm birth, low birthweight and use of supplemental oxygen
but improved risk models are needed to identify infants that progress to treatment requiring disease and
blindness. Deep learning techniques have been used to successfully identify “plus” disease in multi-
institutional cohorts and to provide a continuous measure of disease severity. A major limitation of deep
learning, however, is the need for large amounts of well curated datasets. Other limitations include overfitting
and “brittleness” that can cause model performance to drop on external data. There are, however, numerous
barriers to building and hosting these large central repositories with multi-institutional data required for robust
deep learning including concerns about data sharing, regulations costs, patient privacy and intellectual
property. In this project, we aim to demonstrate the utility of distributed/federated deep learning approaches
where the data are located within institutions, but model parameters are shared with a central server.
A major challenge thwarting this research, however, is the requirement for large quantities of labeled image
data to train deep learning models. Efforts to create large public centralized collections of image data are
hindered by barriers to data sharing, costs of image de-identification, patient privacy concerns, and control
over how data are used. Current deep learning models that are being built using data from one or a few
institutions are limited by potential overfitting and poor generalizability. Instead of centralizing or sharing patient
images, we aim to distribute the training of deep learning models across institutions with computations
performed on their local image data.
Specifically, we seek to build robust risk models for predicting treatment requiring disease. Two large cohorts
will be used to validate the hypothesis that the performance of the risk models using distributed learning
approaches that of centrally hosted and is more robust than models built on single institutional datasets.
Grants Admin
Updated 04.01.2019 JBou
ROP是一种影响早产儿的视网膜新生血管疾病,是儿童失明的主要原因
全世界。已知的临床危险因素包括早产,低出生体重和补充氧气的使用
但是需要改善的风险模型来确定发展为需要疾病和疾病治疗的婴儿
失明。深度学习技术已被用来成功识别多种多样的“加人”疾病
机构人群,并提供连续的疾病严重程度衡量。深处的主要局限
但是,学习是需要大量精心策划的数据集。其他限制包括过度拟合
以及可能导致模型性能下降外部数据的“脆性”。但是,有很多
建立和托管这些大型中央存储库的障碍,具有强大的多机构数据
深度学习包括有关数据共享,法规成本,患者隐私和智力的担忧
财产。在这个项目中,我们旨在展示分布式/联合深度学习方法的实用性
数据位于机构内,但模型参数与中央服务器共享。
但是,挫败这项研究的一个重大挑战是对大量标记图像的要求
数据训练深度学习模型。创建大型公共集中式图像数据集的努力是
受到数据共享的障碍,图像去识别成本,患者隐私问题和控制的阻碍
关于如何使用数据。当前使用一个或几个数据的数据正在构建的当前深度学习模型
机构受到潜在过度拟合和易于推广性的限制。而不是集中或共享患者
图像,我们旨在通过计算在机构上分发深度学习模型的培训
在其本地图像数据上执行。
具体而言,我们试图建立强大的风险模型来预测需要疾病的治疗。两个大型队列
将用于验证以下假设:使用分布式学习的风险模型的性能
与在单个机构数据集上构建的模型相比,接近中央托管的方法更强大。
赠款管理员
更新了2019年1月1日
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jayashree Kalpathy-Cramer其他文献
Jayashree Kalpathy-Cramer的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jayashree Kalpathy-Cramer', 18)}}的其他基金
Distributed Learning of Deep Learning Models for Cancer Research
癌症研究深度学习模型的分布式学习
- 批准号:
10228687 - 财政年份:2019
- 资助金额:
$ 19.69万 - 项目类别:
Distributed Learning of Deep Learning Models for Cancer Research
癌症研究深度学习模型的分布式学习
- 批准号:
10018827 - 财政年份:2019
- 资助金额:
$ 19.69万 - 项目类别:
Informatics Tools for Optimized Imaging Biomarkers for Cancer Research&Discovery
用于优化癌症研究成像生物标志物的信息学工具
- 批准号:
9564836 - 财政年份:2014
- 资助金额:
$ 19.69万 - 项目类别:
Informatics Tools for Optimized Imaging Biomarkers for Cancer Research&Discovery
用于优化癌症研究成像生物标志物的信息学工具
- 批准号:
8787268 - 财政年份:2014
- 资助金额:
$ 19.69万 - 项目类别:
Informatics Tools for Optimized Imaging Biomarkers for Cancer Research&Discovery
用于优化癌症研究成像生物标志物的信息学工具
- 批准号:
9334737 - 财政年份:2014
- 资助金额:
$ 19.69万 - 项目类别:
Clinical Image Retrieval: User needs assessment, toolbox development & evaluation
临床图像检索:用户需求评估、工具箱开发
- 批准号:
7739714 - 财政年份:2009
- 资助金额:
$ 19.69万 - 项目类别:
Clinical Image Retrieval: User needs assessment toolbox development & evaluation
临床图像检索:用户需求评估工具箱开发
- 批准号:
8299311 - 财政年份:2009
- 资助金额:
$ 19.69万 - 项目类别:
Clinical Image Retrieval: User needs assessment toolbox development & evaluation
临床图像检索:用户需求评估工具箱开发
- 批准号:
8323502 - 财政年份:2009
- 资助金额:
$ 19.69万 - 项目类别:
相似国自然基金
“共享建筑学”的时空要素及表达体系研究
- 批准号:
- 批准年份:2019
- 资助金额:63 万元
- 项目类别:面上项目
基于城市空间日常效率的普通建筑更新设计策略研究
- 批准号:51778419
- 批准年份:2017
- 资助金额:61.0 万元
- 项目类别:面上项目
宜居环境的整体建筑学研究
- 批准号:51278108
- 批准年份:2012
- 资助金额:68.0 万元
- 项目类别:面上项目
The formation and evolution of planetary systems in dense star clusters
- 批准号:11043007
- 批准年份:2010
- 资助金额:10.0 万元
- 项目类别:专项基金项目
新型钒氧化物纳米组装结构在智能节能领域的应用
- 批准号:20801051
- 批准年份:2008
- 资助金额:18.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Understanding the Role of GARP Proteins in Rod Outer Segment Disc Formation and Retinal Degeneration
了解 GARP 蛋白在视杆外节盘形成和视网膜变性中的作用
- 批准号:
10748725 - 财政年份:2023
- 资助金额:
$ 19.69万 - 项目类别:
Mechanistic Understanding of Mustard Gas Toxicity in the Retina using a Minipig Model
使用小型猪模型了解芥子气视网膜毒性的机制
- 批准号:
10882080 - 财政年份:2023
- 资助金额:
$ 19.69万 - 项目类别:
Myopia and Glaucoma, Linked via Mechanotransduction Mechanisms Affecting the Ganglion Cell Complex
近视和青光眼通过影响神经节细胞复合体的机械传导机制联系起来
- 批准号:
10656793 - 财政年份:2023
- 资助金额:
$ 19.69万 - 项目类别:
Mechanisms of neural compensation in the retina and dysfunction in congenital stationary night blindness
先天性静止性夜盲症视网膜神经代偿机制及功能障碍
- 批准号:
10678730 - 财政年份:2023
- 资助金额:
$ 19.69万 - 项目类别:
Characterizing the prevalence and nature of facial recognition deficits in non-proliferative diabetic retinopathy
描述非增殖性糖尿病视网膜病变中面部识别缺陷的患病率和性质
- 批准号:
10667781 - 财政年份:2023
- 资助金额:
$ 19.69万 - 项目类别: