Distributed Learning of Deep Learning Models for Cancer Research
癌症研究深度学习模型的分布式学习
基本信息
- 批准号:10018827
- 负责人:
- 金额:$ 39.48万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-09-16 至 2022-08-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAdoptedAdvanced Malignant NeoplasmBrainCancer ModelCancer PatientClassificationClinicalClinical DataCollaborationsCollectionCommunitiesComputational algorithmComputer softwareCustomDataData ScientistData SecurityData SetDecision MakingDevelopmentDiagnosisDiseaseEcosystemEngineeringEnsureEquipmentFaceFeedbackFosteringGliomaHealthHeterogeneityHospitalsImageImpairmentInformation NetworksInstitutionIntuitionIsocitrate DehydrogenaseLabelLeadMagnetic Resonance ImagingMalignant NeoplasmsMalignant neoplasm of brainMedical ImagingMethodsModelingMutationPatient imagingPatientsPerformancePeriodicityPhenotypePrivacyRare DiseasesResearchResearch PersonnelResolutionResourcesRiskRunningSecureSecuritySelection for TreatmentsSiteSystemTechniquesTechnologyTestingTrainingTranslatingUpdateVariantWeightWorkanticancer researchbasecancer carecancer typecare outcomesclinical careclinical decision supportclinical decision-makingcohortcostdata privacydata qualitydata sharingdeep learningimprovedinnovationinter-institutionallearning strategymolecular markermultidisciplinarynovelpatient populationpatient privacyradiologistresearch to practicesoftware systemssurvival predictiontool
项目摘要
Project Summary
Deep learning methods are showing great promise for advancing cancer research and could potentially
improve clinical decision making in cancers such as primary brain glioma, where deep learning models have
recently shown promising results in predicting isocitrate dehydrogenase (IDH) mutation and survival in these
patients. A major challenge thwarting this research, however, is the requirement for large quantities of labeled
image data to train deep learning models. Efforts to create large public centralized collections of image data
are hindered by barriers to data sharing, costs of image de-identification, patient privacy concerns, and control
over how data are used. Current deep learning models that are being built using data from one or a few
institutions are limited by potential overfitting and poor generalizability. Instead of centralizing or sharing patient
images, we aim to distribute the training of deep learning models across institutions with computations
performed on their local image data. Although our preliminary results demonstrate the feasibility of this
approach, there are three key challenges to translating these methods into research practice: (1) data is
heterogeneous among institutions in the amount and quality of data that could impair the distributed
computations, (2) there are data security and privacy concerns, and (3) there are no software packages that
implement distributed deep learning with medical images. We tackle these challenges by (1) optimizing and
expanding our current methods of distributed deep learning to tackle challenges of data variability and data
privacy/security, (2) creating a freely available software system for building deep learning models on multi-
institutional data using distributed computation, and (3) evaluating our system to tackle deep learning problems
in example use cases of classification and clinical prediction in primary brain cancer. Our approach is
innovative in developing distributed deep learning methods that will address variations in data among different
institutions, that protect patient privacy during distributed computations, and that enable sites to discover
pertinent datasets and participate in creating deep learning models. Our work will be significant and impactful
by overcoming critical hurdles that researchers face in tapping into multi-institutional patient data to create
deep learning models on large collections of image data that are more representative of disease than data
acquired from a single institution, while avoiding the hurdles to inter-institutional sharing of patient data.
Ultimately, our methods will enable researchers to collaboratively develop more generalizable deep learning
applications to advance cancer care by unlocking access to and leveraging huge amounts of multi-institutional
image data. Although our clinical use case in developing this technology is primary brain cancer, our methods
will generalize to all cancers, as well as to other types of data besides images for use in creating deep learning
models, and will ultimately lead to robust deep learning applications that are expected to improve clinical care
and outcomes in many types of cancer.
项目摘要
深度学习方法表现出巨大的前景,可以推进癌症研究,并有可能
改善癌症(例如原发性脑神经胶质瘤)的临床决策,深度学习模型具有
最近显示出有希望的结果,可以预测这些异氯酸酯脱氢酶(IDH)突变和其中的存活率
患者。但是,挫败这项研究的一个重大挑战是对大量标签的要求
图像数据训练深度学习模型。努力创建大量的图像数据集中集中集合
受到数据共享障碍,图像去识别成本,患者隐私问题和控制的阻碍
关于如何使用数据。当前使用一个或几个数据的数据正在构建的当前深度学习模型
机构受到潜在过度拟合和易于推广性的限制。而不是集中或共享患者
图像,我们旨在通过计算在机构上分发深度学习模型的培训
在其本地图像数据上执行。尽管我们的初步结果证明了这一点的可行性
方法,将这些方法转化为研究实践存在三个关键挑战:(1)数据是
机构之间的异质数据可能会损害分布式的数据的数量和质量
计算,(2)存在数据安全和隐私问题,(3)没有软件包
用医学图像实施分布式深度学习。我们通过(1)优化解决这些挑战和
扩展我们当前的分布式深度学习方法,以应对数据可变性和数据的挑战
隐私/安全性,(2)创建一个免费可用的软件系统
使用分布式计算的机构数据,以及(3)评估我们的系统以解决深度学习问题
例如,在原发性脑癌中分类和临床预测的用例。我们的方法是
开发分布式深度学习方法的创新性,该方法将解决不同的数据的变化
机构,保护在分布式计算过程中保护患者隐私的机构,并使站点能够发现
相关数据集并参与创建深度学习模型。我们的工作将是巨大而有影响力的
通过克服研究人员在利用多机构的患者数据时所面临的关键障碍以创建
大量图像数据收集的深度学习模型比数据更具疾病代表性
从单个机构获得,同时避免了障碍跨机构分享患者数据。
最终,我们的方法将使研究人员能够协作开发更广泛的深度学习
通过解锁访问并利用大量多机构的申请来提高癌症护理
图像数据。尽管我们开发该技术的临床用例是原发性脑癌,但我们的方法
将推广到所有癌症,以及除图像以外用于创建深度学习外的其他类型的数据
模型,并最终会导致强大的深度学习应用,这些应用有望改善临床护理
以及许多类型的癌症的结果。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jayashree Kalpathy-Cramer其他文献
Jayashree Kalpathy-Cramer的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jayashree Kalpathy-Cramer', 18)}}的其他基金
Robust AI to develop risk models in retinopathy of prematurity using deep learning
强大的人工智能利用深度学习开发早产儿视网膜病变的风险模型
- 批准号:
10254429 - 财政年份:2020
- 资助金额:
$ 39.48万 - 项目类别:
Distributed Learning of Deep Learning Models for Cancer Research
癌症研究深度学习模型的分布式学习
- 批准号:
10228687 - 财政年份:2019
- 资助金额:
$ 39.48万 - 项目类别:
Informatics Tools for Optimized Imaging Biomarkers for Cancer Research&Discovery
用于优化癌症研究成像生物标志物的信息学工具
- 批准号:
9564836 - 财政年份:2014
- 资助金额:
$ 39.48万 - 项目类别:
Informatics Tools for Optimized Imaging Biomarkers for Cancer Research&Discovery
用于优化癌症研究成像生物标志物的信息学工具
- 批准号:
8787268 - 财政年份:2014
- 资助金额:
$ 39.48万 - 项目类别:
Informatics Tools for Optimized Imaging Biomarkers for Cancer Research&Discovery
用于优化癌症研究成像生物标志物的信息学工具
- 批准号:
9334737 - 财政年份:2014
- 资助金额:
$ 39.48万 - 项目类别:
Clinical Image Retrieval: User needs assessment, toolbox development & evaluation
临床图像检索:用户需求评估、工具箱开发
- 批准号:
7739714 - 财政年份:2009
- 资助金额:
$ 39.48万 - 项目类别:
Clinical Image Retrieval: User needs assessment toolbox development & evaluation
临床图像检索:用户需求评估工具箱开发
- 批准号:
8299311 - 财政年份:2009
- 资助金额:
$ 39.48万 - 项目类别:
Clinical Image Retrieval: User needs assessment toolbox development & evaluation
临床图像检索:用户需求评估工具箱开发
- 批准号:
8323502 - 财政年份:2009
- 资助金额:
$ 39.48万 - 项目类别:
相似国自然基金
采用新型视觉-电刺激配对范式长期、特异性改变成年期动物视觉系统功能可塑性
- 批准号:32371047
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
破解老年人数字鸿沟:老年人采用数字技术的决策过程、客观障碍和应对策略
- 批准号:72303205
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
通过抑制流体运动和采用双能谱方法来改进烧蚀速率测量的研究
- 批准号:12305261
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
采用多种稀疏自注意力机制的Transformer隧道衬砌裂缝检测方法研究
- 批准号:62301339
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
政策激励、信息传递与农户屋顶光伏技术采用提升机制研究
- 批准号:72304103
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
A Multi-Institute Survivorship Study of Patients Living with Advanced Cancer Who Have Had Durable Response to Immune Checkpoint Inhibitors
对免疫检查点抑制剂有持久反应的晚期癌症患者的多机构生存研究
- 批准号:
10714336 - 财政年份:2023
- 资助金额:
$ 39.48万 - 项目类别:
Mentoring the next generation of researchers at the intersection of opioid use disorder and chronic pain
指导下一代研究人员研究阿片类药物使用障碍和慢性疼痛的交叉点
- 批准号:
10663642 - 财政年份:2023
- 资助金额:
$ 39.48万 - 项目类别:
Creatine supplementation and resistance training to preserve muscle mass and attenuate cancer progression: A double-blind randomized controlled trial
肌酸补充剂和阻力训练可保持肌肉质量并减缓癌症进展:一项双盲随机对照试验
- 批准号:
10712432 - 财政年份:2023
- 资助金额:
$ 39.48万 - 项目类别: