Quantitative histopathology for cancer prognosis using quantitative phase imaging on stained tissues
使用染色组织的定量相位成像进行癌症预后的定量组织病理学
基本信息
- 批准号:10249738
- 负责人:
- 金额:$ 57.63万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-03-16 至 2024-03-15
- 项目状态:已结题
- 来源:
- 关键词:2019-nCoVAcademiaAirArtificial IntelligenceBackBiologyBreath TestsCOVID-19COVID-19 testingCancer PrognosisChemicalsClassificationClinicalClinical MicrobiologyComputer softwareComputersDataDevicesExhalationFluorescenceFluorescence MicroscopyFutureGlassGoalsHistopathologyHomeImageImaging DeviceImaging TechniquesIndividualIndustryInfluenzaInfrastructureInterference MicroscopyLabelLightMapsMeasuresMicroscopeModificationMorphologic artifactsNatureOpticsPatientsPerformancePhasePhotobleachingPhototoxicityPopulationPreparationProceduresPublicationsResearchRunningSalesSlideSpecificityStructureSystemTechnologyTestingTimeTissue StainsTrainingViralVirusVirus Diseasesalgorithm trainingbaseclinical infrastructurecoronavirus diseasecostdeep learningdeep learning algorithmdesignimaging systeminstrumentmonitoring devicenanoscalenew technologynoveloperationpandemic diseaseparticlepoint of carepoint of care testingprototypescreeningtool
项目摘要
Summary
Fast, accurate, and scalable testing has been recognized unanimously as crucial for mitigating the
impact of COVID-19 and future pandemics. We propose a technology that allows rapid (~2
minutes) testing for SARS CoV-2. Our technology combines novel label-free imaging and
dedicated deep-learning algorithms to detect and classify viral populations in exhaled air. If
successful, this project will result in a device based on quantitative phase imaging and integrated
AI tools, which will detect the unlabeled virus acquired by the patient’s breath condensed on a
microscope slide. Toward this goal, we will advance Spatial Light Interference Microscopy
(SLIM), an ultrasensitive label-free imaging technique, proven to measure structures down to the
sub-nanometer scale. SLIM was developed in the PI’s Lab at UIUC, its original publication
received 490 citations to date, and has been commercialized by Phi Optics (Research Park,
UIUC), with sales across the world in both academia and industry.
Applying the computed fluorescence maps back to the QPI data, we propose to measure
nanoscale features of viral particles, with high specificity, minimal preparation time, and
independent of clinical infrastructure. As a result, the new technology will eventually be ideal for
point-of-care settings, surveillance screening and as a home monitoring device. We anticipate
that our approach will be scalable to other viruses, with new imaging and training data.
概括
快速,准确且可扩展的测试已被一致认为对于缓解措施至关重要
COVID-19和未来大流行的影响。我们提出了一种允许快速的技术(〜2
分钟)测试SARS COV-2。我们的技术结合了新颖的无标签成像和
专门的深度学习算法,以检测和分类呼出空气中的病毒种群。如果
成功,该项目将导致基于定量阶段成像并集成的设备
AI工具,该工具将检测患者在患者的呼吸上获得的未标记的病毒
显微镜载玻片。朝向这个目标,我们将提高空间光干扰显微镜
(Slim)是一种超敏感的无标签成像技术,证明可以测量结构向下
子纳米尺度。 Slim是在UIUC的Pi的实验室中开发的,其原始出版物
迄今
UIUC),全球销售在学术界和行业中。
将计算的荧光图应用回QPI数据,我们建议测量
病毒颗粒的纳米级特征,具有高特异性,最小的准备时间和
独立于临床基础设施。结果,新技术最终将是理想的选择
护理点设置,监视筛查和作为家庭监控设备。我们期待
通过新的成像和培训数据,我们的方法将可扩展到其他病毒。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Kevin William Eliceiri其他文献
Kevin William Eliceiri的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Kevin William Eliceiri', 18)}}的其他基金
Center for Multiparametric Imaging of Tumor Immune Microenvironments
肿瘤免疫微环境多参数成像中心
- 批准号:
10374450 - 财政年份:2021
- 资助金额:
$ 57.63万 - 项目类别:
Center for Multiparametric Imaging of Tumor Immune Microenvironments
肿瘤免疫微环境多参数成像中心
- 批准号:
10538588 - 财政年份:2021
- 资助金额:
$ 57.63万 - 项目类别:
Quantitative histopathology for cancer prognosis using quantitative phase imaging on stained tissues
使用染色组织的定量相位成像进行癌症预后的定量组织病理学
- 批准号:
10197858 - 财政年份:2019
- 资助金额:
$ 57.63万 - 项目类别:
Quantitative histopathology for cancer prognosis using quantitative phase imaging on stained tissues
使用染色组织的定量相位成像进行癌症预后的定量组织病理学
- 批准号:
9977150 - 财政年份:2019
- 资助金额:
$ 57.63万 - 项目类别:
Acquisition of a Confocal Microscope for R.M Bock Laboratories
为 R.M Bock 实验室购买共焦显微镜
- 批准号:
7794338 - 财政年份:2010
- 资助金额:
$ 57.63万 - 项目类别:
ImageJ as an extensible image processing framework
ImageJ 作为可扩展的图像处理框架
- 批准号:
7939813 - 财政年份:2009
- 资助金额:
$ 57.63万 - 项目类别:
ImageJ as an extensible image processing framework
ImageJ 作为可扩展的图像处理框架
- 批准号:
7853788 - 财政年份:2009
- 资助金额:
$ 57.63万 - 项目类别:
OME-XML: Development of a Data Standard for Biological Light Microscopy
OME-XML:生物光学显微镜数据标准的开发
- 批准号:
7587392 - 财政年份:2008
- 资助金额:
$ 57.63万 - 项目类别:
相似海外基金
UTMB-Novartis Alliance for Pandemic Preparedness
UTMB-诺华流行病防范联盟
- 批准号:
10514146 - 财政年份:2022
- 资助金额:
$ 57.63万 - 项目类别:
UTMB-Novartis Alliance for Pandemic Preparedness
UTMB-诺华流行病防范联盟
- 批准号:
10845855 - 财政年份:2022
- 资助金额:
$ 57.63万 - 项目类别:
Wirelessly controlled BSL3 vivarium system for automated microdosing in studies of infectious diseases
无线控制的 BSL3 饲养系统,用于传染病研究中的自动微剂量给药
- 批准号:
10456234 - 财政年份:2021
- 资助金额:
$ 57.63万 - 项目类别:
Wirelessly controlled BSL3 vivarium system for automated microdosing in studies of infectious diseases
无线控制的 BSL3 饲养系统,用于传染病研究中的自动微剂量给药
- 批准号:
10259431 - 财政年份:2021
- 资助金额:
$ 57.63万 - 项目类别:
Regional Healthcare Ecosystem Analyst (RHEA) Modeling the Environment (MODE): SARS-CoV-2
区域医疗生态系统分析师 (RHEA) 环境建模 (MODE):SARS-CoV-2
- 批准号:
10202048 - 财政年份:2020
- 资助金额:
$ 57.63万 - 项目类别: