Wirelessly controlled BSL3 vivarium system for automated microdosing in studies of infectious diseases
无线控制的 BSL3 饲养系统,用于传染病研究中的自动微剂量给药
基本信息
- 批准号:10456234
- 负责人:
- 金额:$ 122.25万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-08-01 至 2024-07-31
- 项目状态:已结题
- 来源:
- 关键词:2019-nCoVAcademiaAcuteAddressAdrenal Cortex HormonesAffectAirAnimal ExperimentationAnimal ModelAnimalsAnti-Inflammatory AgentsAntibody ResponseAutomationBacteriaBiological AvailabilityBluetoothBreedingCOVID-19COVID-19 patientCOVID-19 susceptibilityCOVID-19 treatmentCathetersChronicClinicalCommunicable DiseasesCommunicationComputersCoronavirusCustomDangerousnessDataDeath RateDexamethasoneDisease OutbreaksDisease VectorsDoseDrug IndustryDrug KineticsEffectivenessEnvironmentExhibitsExposure toExternal Infusion PumpsGeneticGoldHemorrhageHormonal ChangeHumanImplantImplantable PumpInfectionInfectious AgentInflammatoryInfusion PumpsInfusion proceduresIntelligenceIntravenousInvadedLaboratoriesLaboratory AnimalsLinkLiquid substanceMagnetic Resonance ImagingMaintenanceMammalsManualsMedicalMemoryModelingMusMutateNeedlesOralOutcomeOxygenPathogenicityPatientsPharmaceutical PreparationsPharmacological TreatmentPhaseProductivityPropertyProtocols documentationProtozoaPublic HealthPumpRattusReactionReproducibilityResearchResearch PersonnelRiskRodentSARS coronavirusSARS-CoV-2 infectionSafetySmall Business Innovation Research GrantSterilizationStressSystemTelemetryTestingTherapeuticTimeToxic effectToxicologyTrainingVaccinesValidationVirusVirus DiseasesWistar RatsWorld War IIbiomaterial compatibilitycombatcostdrug candidatedrug developmentexperimental studyflexibilityfungusin vivoinfection riskinstrumentintraperitoneallong term consequences of COVID-19microorganismmouse modelnovelnovel coronavirusoperationpandemic diseasepandemic influenzapathogenic viruspre-clinical researchprogramsresponserestraintsafety testingside effectsubcutaneoustargeted treatmentvaccine developmentvaccine trialvaccine-induced antibodieswireless
项目摘要
Project Summary
Infectious diseases are caused by micro-organisms, such as bacteria, protozoa, viruses or fungi, which can be
transferred through direct or indirect human contact. A viral infection occurs when a host's body is invaded by
pathogenic viruses, such as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the virus that
causes COVID-19 and the current pandemic. This pandemic is the greatest public health challenge since the
1918 influenza pandemic and the biggest threat to destabilizing the global economy since World War II.
As viruses tend to mutate quicker than other pathogenic agents (and thus newer strains emerge time and again),
continuous research is required to combat infectious agents. For preclinical research, the most frequently used
animal models are mice and rats. They offer an optimal combination of genetic proximity to humans, cost for
breeding and colony maintenance possibilities due to their small size. Mice offer the broadest spectrum of
available models. Rats are the second most frequently used mammal animal model. In fact, several SARS-CoV-
2 researchers are turning to rats. They are no more susceptible to COVID-19 than mice, but their larger size is
an advantage, as, for example, researchers often want to do repetitive bleeding in an experiment but cannot do
that with mice. Furthermore, as vaccine studies often assess how different doses affect antibody responses over
several days, most toxicology studies of drugs also start in rat.
To achieve intermittent infusions in most non-infectious disease research, the current prevailing administration
modes for small animal research are manual (oral, intravenous, intraperitoneal, subcutaneous) requiring
repeated handling by trained technicians. However, infectious disease researchers desire the least number of
touchpoints possible with their infected animals, especially when sharp needles are involved
The proposed FluidSync BSL3 system may aid the discovery of new treatments for COVID-19 by enabling
candidate drugs to be administered to model animals infected with SARS-CoV-2 while minimizing
investigator contact. It may also be used in the development of vaccines and antibodies. The system builds on
the first and only wireless and tether-free administration system that can be used in animals as small as mice.
The new system will have new capabilities including i) a medical-grade primary battery and ii) a programmable
system-on-chip including Bluetooth telemetry transceiver, processor and memory.
Ultimately, the FluidSync BSL3 microinfusion system would enable an intelligent instrumented vivarium system
that addresses many BSL3 user requirements with benefits including increased productivity, reduced researcher
exposure to potentially toxic drugs and disease vectors, ease of management of large-scale animal studies, and
minimized animal handling to reduce white coat effects.
项目概要
传染病是由细菌、原虫、病毒或真菌等微生物引起的,可以通过
通过直接或间接的人际接触传播。当宿主的身体受到病毒入侵时,就会发生病毒感染
致病病毒,例如严重急性呼吸综合征冠状病毒 2 (SARS-CoV-2),该病毒
导致了 COVID-19 和当前的大流行。此次疫情是自疫情爆发以来最大的公共卫生挑战
1918 年流感大流行是二战以来全球经济不稳定的最大威胁。
由于病毒比其他病原体突变得更快(因此新的病毒株一次又一次地出现),
需要持续研究来对抗传染源。对于临床前研究,最常用的是
动物模型有小鼠和大鼠。它们提供了与人类的遗传接近度、成本的最佳组合
由于其体型较小,因此具有繁殖和群体维持的可能性。小鼠提供最广泛的
可用型号。大鼠是第二常用的哺乳动物模型。事实上,一些 SARS-CoV-
2 位研究人员正在转向老鼠。它们并不比小鼠更容易感染 COVID-19,但它们体型较大
这是一个优势,例如,研究人员经常想在实验中进行重复出血但无法做到
与老鼠有关。此外,由于疫苗研究经常评估不同剂量如何影响抗体反应
几天来,大多数药物的毒理学研究也在大鼠身上开始。
为了在大多数非传染性疾病研究中实现间歇性输注,当前流行的给药方式
小动物研究的模式是手动的(口服、静脉注射、腹膜内、皮下),需要
由经过培训的技术人员重复处理。然而,传染病研究人员希望最少数量的
可能与受感染的动物接触,尤其是涉及锋利的针头时
拟议的 FluidSync BSL3 系统可以通过启用来帮助发现新的 COVID-19 治疗方法
对感染 SARS-CoV-2 的模型动物施用候选药物,同时最大限度地减少
调查员联系方式。它还可用于疫苗和抗体的开发。该系统建立在
第一个也是唯一一个无线且无绳的管理系统,可用于小如小鼠的动物。
新系统将具有新功能,包括 i) 医用级原电池和 ii) 可编程
片上系统包括蓝牙遥测收发器、处理器和存储器。
最终,FluidSync BSL3 微量输注系统将实现智能仪表化饲养系统
满足许多 BSL3 用户需求,其优点包括提高生产力、减少研究人员
接触潜在有毒药物和疾病媒介、易于管理大规模动物研究,以及
尽量减少动物处理以减少白大衣效应。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
TUAN Q HOANG其他文献
TUAN Q HOANG的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('TUAN Q HOANG', 18)}}的其他基金
Wirelessly controlled BSL3 vivarium system for automated microdosing in studies of infectious diseases
无线控制的 BSL3 饲养系统,用于传染病研究中的自动微剂量给药
- 批准号:
10259431 - 财政年份:2021
- 资助金额:
$ 122.25万 - 项目类别:
相似海外基金
A Diet Intervention Study To Mitigate Fatigue Symptoms And To Improve Muscle And Physical Function In Older Adults With Post-Acute COVID-19 Syndrome
一项饮食干预研究,旨在减轻患有急性后 COVID-19 综合症的老年人的疲劳症状并改善肌肉和身体功能
- 批准号:
10734981 - 财政年份:2023
- 资助金额:
$ 122.25万 - 项目类别:
Role of Data Streams In Informing Infection Dynamics in Africa- INFORM Africa
数据流在非洲感染动态通报中的作用 - INFORM Africa
- 批准号:
10490316 - 财政年份:2021
- 资助金额:
$ 122.25万 - 项目类别:
Role of Data Streams In Informing Infection Dynamics in Africa- INFORM Africa
数据流在非洲感染动态通报中的作用 - INFORM Africa
- 批准号:
10669758 - 财政年份:2021
- 资助金额:
$ 122.25万 - 项目类别:
Role of Data Streams In Informing Infection Dynamics in Africa- INFORM Africa
数据流在非洲感染动态通报中的作用 - INFORM Africa
- 批准号:
10312887 - 财政年份:2021
- 资助金额:
$ 122.25万 - 项目类别:
Wirelessly controlled BSL3 vivarium system for automated microdosing in studies of infectious diseases
无线控制的 BSL3 饲养系统,用于传染病研究中的自动微剂量给药
- 批准号:
10259431 - 财政年份:2021
- 资助金额:
$ 122.25万 - 项目类别: