Multi-Scale 3-D Image Analytics for High Dimensional Spatial Mapping of Normal Tissues
用于正常组织高维空间绘图的多尺度 3D 图像分析
基本信息
- 批准号:10246250
- 负责人:
- 金额:$ 75万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-09-15 至 2022-08-31
- 项目状态:已结题
- 来源:
- 关键词:3-DimensionalAddressAgeAgingAlgorithmic AnalysisAlgorithmic SoftwareAlgorithmsArchitectureAreaArtificial IntelligenceAtlasesBackBiological MarkersBiopsyCaliforniaCellsCellular biologyChemistryClinicalCollaborationsComputer softwareCoupledDataData CollectionDiseaseEnvironmentEnvironmental Risk FactorExposure toExtracellular MatrixFundingGenerationsGenomeGoalsGovernmentHuman BioMolecular Atlas ProgramHuman bodyImageImage AnalysisImaging technologyIndividualInstitutesLeadLinkLocationMachine LearningMapsMeasuresMethodsModelingMolecularMolecular StructureMultiomic DataNormal tissue morphologyOpticsOrganOrgan ModelOutcomePathogenicityProteomicsRNARecording of previous eventsResearchResolutionSamplingSkinSkin AgingSkin TissueSoftware ToolsSolidTechnologyThree-Dimensional ImageTimeLineTissue SampleTissue imagingTissuesTractionUV Radiation ExposureUnited States National Institutes of HealthUniversitiesVisualizationWorkage effectage groupanalysis pipelinedata integrationdata visualizationexperienceextracellularhigh dimensionalityimage visualizationimaging Segmentationimaging platforminnovationmembermultidimensional datamultidisciplinarymultiple omicsmultiplexed imagingmultiscale dataopen sourceprogramsreconstructionsample collectionsingle cell analysissoftware developmenttask analysisthree-dimensional visualizationtomographytool
项目摘要
PROJECT SUMMARY/ABSTRACT
The overall goal of the proposed project is to develop open-source software and algorithms for 3-D reconstruc-
tion and multi-scale mapping of normal tissues. Another significant goal is to evaluate effects of aging and envi-
ronmental factors on molecular and structural architecture of skin. We will leverage our mature (TRL8) technol-
ogy for multiplexed 2-D imaging (Cell DIVE™), and our vast experience in 2-D image analytics and machine
learning. We have selected normal skin as the organ to develop these tools for several reasons, a) clinical sam-
ples from different age groups are more readily available, b) it is a good model to independently capture changes
in extracellular matrix (ECM) due to age and normal exposure to environmental factors as well as a variety of
pathogenic insults. While the ECM, cellular and intracellular molecular composition varies considerably among
various organs, we believe many of the tools developed under this program will be applicable to reconstruct and
map other organ models at high (cellular/subcellular) resolution. This proposal will focus on developing algo-
rithms and a framework for multi-scale mapping of 3-D tissue images, which will address HuBMAP priorities
around quantitative 3-D image analysis/mapping, including automated 3-D image segmentation, feature ex-
traction, and image annotation. High-resolution (subcellular) mapping of biomolecules will be implemented us-
ing 2-D multiplexed images that are used to reconstruct the 3-D tissue and linked to a lower resolution 3-D opti-
cal coherence tomography (OCT) image of the normal tissue. Other cell-level omic data (e.g., RNA FISH) will be
mapped in the same way. The low-resolution image is mapped back to a higher-level landmark (e.g., organ) as
defined by the HuBMAP common coordinate framework (CCF). As outlined, our proposed technologies will in-
clude several key features that are significant and complimentary to existing HuBMAP consortium projects and
will advance the state of the art in 3-D tissue analysis. The proposed algorithms will have several key innova-
tions that will advance the state of the art in 3-D multiplexed tissue image analysis. First, given the large vol-
umes to be analyzed, high throughput will be a key requirement of each image analysis algorithm. This will be
supported by our extensive experience in parallelizing single cell analysis pipelines. Second, the proposed algo-
rithms will segment the images at multiple scales. The third area of innovation will focus on efficient multi-
channel analysis. The proposed project will include creation of an easy-to-use software tool for assembling and
visualizing multiscale tissue data called Tissue Atlas Navigation Graphical Overview (TANGO).
项目摘要/摘要
拟议项目的总体目标是为3-D重建 - 开发开源软件和算法 -
正常组织的多尺度映射。另一个重要的目标是评估衰老和环境的影响
皮肤分子和结构结构的隆起因素。我们将利用我们的成熟(TRL8)技术 -
用于多路复用的二维成像(Cell Dive™)的OGY,以及我们在二维图像分析和机器上的丰富经验
学习。我们选择了正常的皮肤作为有几个原因开发这些工具的器官,a)临床SAM-
来自不同年龄段的元素更容易获得,b)这是一个独立捕获变化的好模型
由于年龄和正常暴露于环境因素以及各种各样的细胞外基质(ECM)
致病性侮辱。而ECM,细胞和细胞内分子组成在
我们认为,该程序下开发的许多工具都适用于重建和
绘制高(细胞/亚细胞)分辨率的其他器官模型。该提案将着重于开发算法 -
RITHM和一个用于三d组织图像的多尺度映射的框架,该图像将解决Hubmap优先级
围绕定量的3-D图像分析/映射,包括自动3-D图像分割,特征Ex-
牵引和图像注释。将实施生物分子的高分辨率(亚细胞)映射。
用于重建3-D组织并与较低分辨率3-D光学链接的2-D多路复用图像
正常组织的Cal相干断层扫描(OCT)图像。其他细胞级的OMIC数据(例如RNA鱼)将是
以相同的方式映射。低分辨率图像被映射到更高级别的地标(例如器官)
由Hubmap公共坐标框架(CCF)定义。如概述,我们拟议的技术将
包括几个关键功能,这些功能与现有的Hubmap联盟项目和合适
将在3-D组织分析中推进艺术状态。拟议的算法将具有几个关键的Innova-
将在3-D多路复用组织图像分析中推进最新技术的影响。首先,鉴于大量的
要分析的UME,高吞吐量将是每种图像分析算法的关键要求。这将是
我们在平行单元分析管道方面的丰富经验的支持下。第二,提出的算法 -
Rithms将以多个尺度分割图像。创新的第三个领域将集中于有效的多种
渠道分析。拟议的项目将包括创建一个易于使用的软件工具,用于组装和
可视化多尺度组织数据称为组织图图图形概述(Tango)。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Fiona Ginty其他文献
Fiona Ginty的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Fiona Ginty', 18)}}的其他基金
Multiscale, Multimodal Analysis of Skin and Spatial Cell Organization
皮肤和空间细胞组织的多尺度、多模式分析
- 批准号:
10826224 - 财政年份:2022
- 资助金额:
$ 75万 - 项目类别:
Multi-Scale 3-D Image Analytics for High Dimensional Spatial Mapping of Normal Tissues
用于正常组织高维空间绘图的多尺度 3D 图像分析
- 批准号:
10251375 - 财政年份:2019
- 资助金额:
$ 75万 - 项目类别:
Systems Modeling of Tumor Heterogeneity and Therapy Response in Colorectal Cancer
结直肠癌肿瘤异质性和治疗反应的系统建模
- 批准号:
9922114 - 财政年份:2017
- 资助金额:
$ 75万 - 项目类别:
Systems Modeling of Tumor Heterogeneity and Therapy Response in Colorectal Cancer
结直肠癌肿瘤异质性和治疗反应的系统建模
- 批准号:
10174854 - 财政年份:2017
- 资助金额:
$ 75万 - 项目类别:
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Fluency from Flesh to Filament: Collation, Representation, and Analysis of Multi-Scale Neuroimaging data to Characterize and Diagnose Alzheimer's Disease
从肉体到细丝的流畅性:多尺度神经影像数据的整理、表示和分析,以表征和诊断阿尔茨海默病
- 批准号:
10462257 - 财政年份:2023
- 资助金额:
$ 75万 - 项目类别:
The contribution of air pollution to racial and ethnic disparities in Alzheimer’s disease and related dementias: An application of causal inference methods
空气污染对阿尔茨海默病和相关痴呆症的种族和民族差异的影响:因果推理方法的应用
- 批准号:
10642607 - 财政年份:2023
- 资助金额:
$ 75万 - 项目类别:
An Engineered Hydrogel Platform to Improve Neural Organoid Reproducibility for a Multi-Organoid Disease Model of 22q11.2 Deletion Syndrome
一种工程水凝胶平台,可提高 22q11.2 缺失综合征多器官疾病模型的神经类器官再现性
- 批准号:
10679749 - 财政年份:2023
- 资助金额:
$ 75万 - 项目类别: